Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome analysis sheds light on drug-resistant pathogen

28.03.2003


Mobile DNA’s role in vancomycin resistance of Enterococcus faecalis



‘Jumping’ elements of DNA have enabled the bacterium Enterococcus faecalis to acquire stubborn resistance to a range of antibiotics – including a “drug of last resort” that is used against such bacterial pathogens.

That is one of the conclusions reached by scientists at The Institute for Genomic Research (TIGR), which sequenced and analyzed the complete genome of E. faecalis V583, a strain of the opportunistic pathogen that is resistant to the antibiotic vancomycin. That strain was first isolated at a St. Louis hospital in 1987.


The results of this work, supported by the National Institute of Allergy and Infectious Diseases (NIAID), are published in a paper in this week’s issue of Science.

Ian Paulsen, Ph.D., the TIGR researcher who is the first author of the Science paper, says the genome analysis found that “mobile elements” – small segments of DNA that can jump between organisms or their chromosomes – appear to play an important role in helping the bacterium quickly develop drug resistance.

The TIGR analysis found that nearly a third of the E. faecalis genome – which encompasses more than 3.2 million DNA base pairs – consists of mobile or ‘foreign’ DNA “That’s an unusually high percentage of mobile elements in a microbial genome,” said Paulsen.

Those mobile elements include three plasmids in the bacterium and multiple remnants of phage, plasmids, and other mobile elements, including transposons and a pathogenicity island located on its single chromosome. Scientists identified two sites in the genome that are related to vancomycin resistance or tolerance.

One of those sites, Paulsen said, appears to be a newly-identified vancomycin resistance transposon, carrying vanB resistance genes. A transposon is a mobile element that can “jump” from one part of a chromosome to another, or from a chromosome in one organism to that of another organism – sometimes carrying along genes that encode for drug-resistance. In the case of vanB, the encoded genes allow the bacterium to alter its cell wall structure to prevent vancomycin from damaging it.

“It’s clear that Enterococcus’s ability to acquire mobile elements has significantly contributed to its drug resistance,” says Paulsen. “The vancomycin resistance is found on a mobile element in the genome.”

TIGR’s president and director, Claire M. Fraser, Ph.D., says the deciphered Enterococcus genome will provide an important tool for biomedical researchers. “The identification of a novel vancomycin-resistant transposon in E. faecalis demonstrates the power of genomics to reveal new insights into the biology of important human pathogens,” Fraser says. “This information is critically important in the search for new antibiotics and vaccines to combat infections diseases.”

E. faecalis lives in the gastrointestinal tracts of humans and animals and is often found in soil, sewage, water and food as a result of fecal contamination. While the bacterium is normally symbiotic in the human gut – causing no harm – it can cause serious infections when other tissues are exposed to the bacterium. Those maladies include infective endocarditis, bacteremia, and urinary tract infections.

Physicians often use vancomycin to treat opportunistic E. faecalis infections if other drugs fail to slow their progress. But the growing number of bacterial strains that are resistant to such antibiotics has made it more difficult for physicians to treat those infections effectively.

An even greater concern is that E. faecalis has been found to act as a “reservoir” for vancomycin resistance. Other researchers already have observed how resistance to vancomycin can be transferred from E. faecalis to more aggresively pathogenic bacteria such as Staphylococcus aureus. That transferral of drug resistance has become a major concern for physicians around the globe.


The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992 and is a leading center for microbial genomics. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.

Additional Contact:
Ian Paulsen, Ph.D., Assistant Investigator, TIGR
(301) 838-3531 or ipaulsen@tigr.org


Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>