Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers test polymer reliability for medical implants

24.03.2003


Sascha Abramson has been investigating new methods to ensure that polymer medical implants in the human body don’t fail. Abramson looked at degradable polymers, ones the body can ultimately absorb, to gain a deeper understanding of how and why their structures change – crucial parts of a puzzle that must be solved for polymers to perform predictably and successfully in medical implants.



Her research was conducted as a postdoctoral associate at Rutgers’ New Jersey Center for Biomaterials in the laboratory of Joachim Kohn, Board of Governors Professor of Chemistry and Chemical Biology, at Rutgers, The State University of New Jersey. Kohn and Abramson co-authored a paper on her findings presented in New Orleans today at the 225th American Chemical Society (ACS) national meeting.

Abramson points out that polymers or plastics are different from other materials that have solid, liquid and gaseous phases. Some polymers exhibit two solid states – a rubbery state and a glassy state. “There is a transition in polymers where they go from a hard, glassy state to a rubbery state. They leave their glassy state when they cross a threshold temperature we call the glass transition temperature,” said Abramson.


She cited the example of cold chewing gum being hard in the package, but softening in the mouth as it warms up above its glass transition temperature and goes into its rubbery state.

The research discussed in the ACS presentation focused on how changes in a polymer’s immediate environment and alterations in its glass transition temperature might affect the material’s stability once it becomes part of a medical implant.

Abramson said that traditionally polymer testing has often been done on dry materials. “The point I am making is that we can’t look only at the dry glass transition temperature. That’s not going to be relevant once you put polymers in the body,” Abramson stated. “In the body they get wet, they hydrate or absorb water, and their glass transition temperature can drop to or below body temperature. What was a very hard glassy material outside the body, now becomes soft.

“We know that hydration can also affect the degradability of the polymer,” Abramson observed. “If we use these polymers for tissue engineering where we want the material to eventually be absorbed harmlessly into the body, hydration-induced shifts in the glass transition temperature can affect how fast the material degrades, in addition to its structural stability in the body.”

She stressed that the glass transition temperature needs to be above body temperature for a load-bearing implant, while a lower glass transition temperature may be more desirable in applications, such as artificial skin, where the material needs to be pliable.

Abramson said her studies of hydrated degradable polymers are preliminary but contends that their importance lies in the fact that this was the first time anyone had ever looked at these materials in this context. “I think we need to understand what is going on in a hydrated material because that’s essentially what is happening in the body,” she said.

Another aspect of her investigations considered the phenomenon of enthalpic relaxation. In these studies, Abramson again focused on the glass transition temperature, using its rise to track the relaxation of molecules over time.

Abramson explained that polymers are made up of very long chain molecules, and these molecules move and they twist around each other. “Over a period of time, these molecules can relax, releasing their pent-up energy in a process called enthalpic relaxation,” she said. “This can lead to a polymer becoming brittle and fracturing easily, which is something we do not want to see in load-bearing medical implants, such as artificial hips.”

Bill Haduch | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>