Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for developmental disorder identified

24.03.2003


Discovery could lead to new therapies for Smith-Magenis Syndrome



Researchers at Michigan State University have identified the gene responsible for a developmental disorder known as Smith-Magenis syndrome (SMS), a discovery that could lead to new therapies for the disorder and the myriad problems that accompany it.
The finding is documented in the March 24 issue of Nature Genetics, a prestigious peer-reviewed British journal.

SMS is a chromosome microdeletion syndrome that is characterized by a very distinct series of physical, developmental and behavioral features, including varying levels of mental retardation, cranio-facial abnormalities, sleep disturbances and self-injurious behaviors.



Because the disease is manifested in so many ways and is associated with a chromosomal deletion that includes many genes, it was always assumed that more than one gene contributed to the disorder, said researcher Sarah Elsea.

"This disorder was assumed to be a contiguous gene syndrome," said Elsea, an assistant professor in the departments of Pediatrics and Human Development and Zoology. "However, our data show that primarily one gene contributes to the phenotype."

What Elsea and colleagues found was mutation on a gene – identified as retionic acid induced 1 (RAI1) – that prevents the production of normal protein from that gene.

"The result of this mutation is that the protein can’t be formed properly," she said. "Individuals with SMS have one normal functioning RAI1 protein from one chromosome, but from the other chromosome they are not getting this protein function at all."

Because SMS is a sporadic genetic disorder, prevention is pretty much out of the question, Elsea said. However, early diagnosis of the disorder can lead to improved outcomes.

"I think that in the future, if we understand what this gene, this protein, does and how it interacts with other proteins in the cell, we might be able to develop some kind of drug therapy that might help deal with the behaviors a little better," she said. "Early diagnosis is beneficial because the child needs the most appropriate early interventions."

Elsea said it’s also very important for parents of SMS children to have a diagnosis.

"They need to know that it’s not something that is preventable," she said. "Parents are sometimes blamed for the abilities or inabilities of their children and that’s unfortunate. A proper diagnosis is crucial for the well-being of the family."

It is estimated that SMS occurs in one of every 25,000 births.

"We’re hopeful this study could have wider-ranging effects on the study of sleep disorders and other behavioral problems, as well as provide more insight into early development of the fetus," Elsea said.

Contributing to the research were Rebecca Slager and Christopher Vlangos, doctoral students in the MSU Genetics Program; Tiffany Lynn Newton, a junior in MSU’s Howard Hughes Undergraduate Research Support Program; and Brenda Finucane of the Elwyn Training and Research Institute of Elwyn, Pa.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>