Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Method to Treat Cancer

20.03.2003


Research at Oxford University’s Institute of Molecular Medicine has identified a novel therapeutic regimen for the treatment of cancer that provides significant advantages over the existing methods of cancer treatment.



There are already a number of regimens available for treatment of cancer, including chemotherapy, which is commonly used to treat a number of different types of cancer. In most cases chemotherapeutic agents are given at the maximum tolerated dose (MTD), but at such doses the treatments can only be given in short courses and often have unacceptable side effects. In recent years, the use of immunotherapy for tumours has also increased, but tumour cells have been shown to evade immunotherapy by mutating to avoid presentation of the specific tumour epitope to the immune system. It has previously been suggested that a combination of immunotherapy and chemotherapy may prove effective as a treatment. However, this has not proved ideal since conventional chemotherapy suppresses the immune system, thereby reducing the effectiveness of the immunotherapy.

Researchers in Oxford have now devised a novel therapeutic regimen that combines the advantages of both chemotherapy and immunotherapy whilst reducing the disadvantages of each. It has been shown that chemotherapeutic agents can have a beneficial effect at doses lower than the MTD (such a dosing regimen has become known as metronomic dosing). Metronomic dosing, whilst not being as aggressive as the MTD regimen, has fewer side effects and can be used for longer periods without a break. The researchers have identified a metronomic regimen that does not cause the severe immunosuppression of standard chemotherapy and so opens the possibility of combining immunotherapy and chemotherapy. Furthermore, they have shown that such a combination therapy is more effective at inhibiting tumour growth than either chemotherapy (at MTD or as a metronomic dose), or immunotherapy alone or than immunotherapy in combination with chemotherapy at MTD.


Isis Innovation, Oxford University’s technology transfer company, has filed a patent on this exciting Oxford discovery. Companies interested in product developments arising from this work are invited to contact Isis to discuss how they could utilise this technology.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1194.html

More articles from Health and Medicine:

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

nachricht Safer viruses for vaccine research and diagnosis
12.12.2019 | University of Queensland

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>