Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover possible new treatment for genetic diseases

17.03.2003


Scientists from Imperial College London, the University of Leicester, and Hammersmith Hospital have found a way to stop certain types of genetic diseases from occurring by modifying the way DNA is turned into proteins.



The research published in this month’s Proceedings of the National Academy of Science shows how the researchers have been able to restore proper expression of defective genes, and that this might potentially have a positive effect in genetic diseases such as spinal muscular atrophy.

The research was carried out at Imperial College London and the University of Leicester as collaboration between Professor Francesco Muntoni and Professor Ian Eperon.


Professor Francesco Muntoni, from Imperial College London and the Hammersmith Hospital comments: "Many genetic diseases are caused by the mutation of just one or two of the 3.2 billion base pairs of DNA which comprise our genome. The technique we have developed with our colleagues at the University of Leicester allows us to correct genetic mutations which result in abnormal splicing, as it is the case for spinal muscular atrophy."

Splicing is part of the process by which genes are converted into proteins. Large chunks of useless and meaningless sequence have accumulated in the genes of higher organisations, and the mutation of just one or two of the 3.2 billion base pairs which make up our genome can interfere with splicing.

To make proteins genes first need to be processed into RNA (ribonucleic acid). The information in the genes is broken up into islands of information called exons, which need to be stitched together, while the meaningless sequences are removed. If the sequence of an exon is changed, splicing can be disrupted, causing genetic mutations.

The researchers were able to stick the right sequences back into the exon by using short pieces of RNA (oligos), which stick to the exon of interest and had been modified to recruit signals that influence splicing. Using this novel strategy the splicing reaction can be manipulated.

This treatment was tested on cells from a patient suffering from spinal muscular atrophy. By putting these oligos into the cells, much of the protein required for the splicing process could be produced, allowing normal development of the cells.

Professor Ian Eperon from the University of Leicester adds: "Although oligos have previously been developed to block expression of genes, this research indicates that we can also use them to restore the proper expression of defective genes. As well as working in diseases with a clear genetic basis such as spinal muscular dystrophy, we are aware that other conditions such as inflammation or cancer involve changes in the splicing of normal genes and our method might allow us to reverse these and facilitate treatment of the illness."

Spinal muscular atrophy is a serious and common disease affecting 1 in 10,000 births, resulting in mortality in babies who have the more serious form. The disease is caused by a mutation in a gene called SMN1. About 1 in 50 people have the defective version of SMN1.

Even though everyone carries a second copy of the SMN1 gene, SMN2, this does not compensate for the problem as a difference in a single base pair from SMN1 in just one exon prevents proper splicing. This novel method, that could have broad applications also in other disease, offers new hope for individuals affected by spinal muscular atrophy.

Tony Stephenson | EurekAlert!
Further information:
http://www.le.ac.uk
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
11.12.2019 | University of Illinois College of Engineering

nachricht Safer viruses for vaccine research and diagnosis
11.12.2019 | University of Queensland

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>