Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop first mouse model of epithelial ovarian cancer

17.03.2003


Fox Chase Cancer Center researchers and their colleagues have developed a mouse model of the most prevalent and deadly form of human ovarian cancer -- epithelial ovarian cancer. The mouse model provides a better opportunity to study the cause of ovarian cancer, examine the genes involved and test preventive, diagnostic and treatment approaches that could be applied to human ovarian cancer.



"These transgenic mice offer us a valuable scientific tool that never before has been available to ovarian cancer researchers," explained Fox Chase Cancer Center’s Denise C. Connolly, Ph.D., corresponding author of the study, which appears in the March 15, 2003, issue of Cancer Research, a journal of the American Association for Cancer Research.

The mice engineered by Connolly and her colleagues develop epithelial ovarian cancer in both ovaries. This cancer arises in the surface, or epithelial, cells of the ovaries. The mouse model was made by introducing a genetically engineered DNA fragment into fertilized mouse eggs prior to their embryonic development. The fragment is a combination of a gene specific promoter and a potent oncogene. The oncogene, Simian virus 40 T antigen, triggers cancer development. The promoter is derived from a gene (Mullerian inhibitory substance type II receptor) that signals the expression of a specific protein found in cells covering the ovaries.


"It was critical to attach the oncogene to a regulator that would limit the cancer-causing gene’s expression to the ovary, including the epithelial ovarian cells," explained Connolly. "Using this strategy, we have generated transgenic animals that develop epithelial ovarian cancer that spreads to the peritoneal organs, similar to human epithelial ovarian cancers."

In humans, epithelial ovarian cancer is diagnosed in approximately 23,000 women each year. In 2003, it is estimated that 14,000 women will die of the disease, making it the fifth most common cancer in women in the United States.

Early detection of these tumors is challenging because there is no standard screening available for the disease. When ovarian cancer is diagnosed at early stages, the survival rate approaches 90 percent. However, the vast majority of cases of ovarian cancer are not identified until late stages, when the survival rate drops to only 30 to 40 percent.

"The development of mouse models of epithelial ovarian cancer may significantly facilitate advances in early detection and treatment of the disease," said Thomas C. Hamilton, Ph.D., senior member of the medical science division at Fox Chase Cancer Center and leader of the ovarian cancer research program. "Models such as this are critical to cancer research because they will allow us to study the progression of ovarian cancer from the very earliest stages to advanced disease.

"The next step is to test chemotherapeutic and chemopreventive agents that we hope will translate into meaningful improvements in the prevention and treatment of ovarian cancer. We’ll also study the relevant oncogenes and tumor-suppressor genes for their ability to allow or trigger the cancer to develop," Hamilton added.

Other contributing researchers include Rudi Bao, M.D., Kasie C. Stephens, Timothy W. Poole, Ph.D., Xiang Hua and Skye S. Harris of Fox Chase Cancer Center; Alexander Yu. Nikitin, M.D., Ph.D., of Cornell University; and Barbara C. Vanderhyden, Ph.D., of the University of Ottawa.

Funding for this research is provided in part by a grant from the National Cancer Institute’s Mouse Models of Human Cancers Consortium (MMHCC), of which Hamilton is a member. Mouse models that recapitulate many aspects of the genesis, progression and clinical course of human cancers are valuable resources to cancer researchers engaged in a variety of basic, translational, clinical and epidemiological investigations.

MMHCC is a collaborative program designed to derive and characterize mouse models and to generate resources, information and innovative approaches to the application of mouse models in cancer research.



Additional grants supporting Dr., Hamilton’s research were received from the National Institutes of Health, the National Cancer Institute Specialized Program of Research Excellence for ovarian cancer, the Commonwealth of Pennsylvania, Edgar Astrove, the Adler Foundation and the Evy Lessin Fund.

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at http://www.fccc.edu or call 1-888-FOX CHASE.

Karen Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>