Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tools speed drug discovery and disease research

13.03.2003


To study the genetic components of disease, researchers rely on mice or other research models in which particular genes are silenced, or turned off. In recent years, researchers discovered that they can selectively silence genes using small pieces of RNA called siRNA (short interfering RNA).



Unfortunately, sorting out which siRNA sequences block expression of which genes has proven to be truly daunting. Researchers at Whitehead Institute, however, recently released for public use a new computational tool that will vastly improve this process, streamlining drug discovery and disease research efforts.

A Needle in a Haystack


To harness the power of siRNA, researchers need predictive tools to narrow down the search for siRNA molecules that are most likely to affect a gene in a desired way without affecting the function of other genes. Until now, hunting for siRNA candidates has been like looking for a needle in haystack. Given a gene of 3000 nucleotides, there are 2980 possible siRNA candidates that might affect how the gene functions. (siRNA sequences are approximately 21 nucleotide bases long).

The Biocomputing Group at Whitehead has greatly simplified this process by devising and publishing a web-based tool that can quickly narrow down siRNA candidates.

"Scientists routinely came to Biocomputing asking how they could more efficiently predict siRNA targets," says Lewitter. "Unfortunately, without suitable prediction tools, scientists had to randomly select siRNA strands from a pool of thousands of possibilities and hope that they would be successful in studying a gene of interest."

Faced with scientists’ mounting frustration, Biocomputing took on the challenge to develop an easy and efficient tool to predict which siRNA molecules will be effective in a particular experiment. "Using this tool, researchers can narrow down the possibilities of potential siRNAs to a small handful that are likely to be effective for studying a particular gene," says Lewitter.

To jumpstart the process, Lewitter initiated a collaboration with Tom Tuschl, a former Whitehead postdoc who had studied siRNA in David Bartel’s lab. Tuschl, who has further developed his characterization of siRNA, first at the Max Planck Institute and now at Rockefeller University, provided Biocomputing with a set of rules for determining candidate siRNAs devised from looking at many siRNA samples. These rules were based on qualities such as the size of the siRNA, its two-dimensional structure, and the components that start and stop the strands.

Using Tuschl’s rules, Bingbing Yuan of the Biocomputing Group wrote a series of computer programs that made these rules available to researchers through a simple web form. Users can enter the human or mouse genes that they are studying and specify certain criteria, and the program selects and displays potential siRNA sequences that can be used to generate a desired genetic effect. When the researcher selects a candidate, the program searches further. An email shortly appears in the user’s inbox with a weblink that shows a refined siRNA target sequence based on the candidate.

Taking it to the Bench

The web-based tool has proven to be a great resource for Whitehead scientists. For researcher David Sabatini, the web tool has streamlined his lab’s efforts to study genes that control cell growth. "Until recently, the process by which we identified siRNA candidates was arbitrary. We now have a tool that enables us to make more precise selections, which saves time, energy, and money," says Sabatini.

Responding to the growing interest in siRNA from both academic and industry scientists, the Biocomputing Group has made their technology available to the public at http://jura.wi.mit.edu/bioc/siRNA/home.php. Based solely on word of mouth, groups in Europe and Asia, as well as throughout the United States, are already flocking to the site.

But, stresses Lewitter, this is just the tip of the iceberg. "Scientists face tremendous challenges in making use of today’s new technologies," she says. "We’re trying to eliminate some of these hurdles by developing computational tools that make sense out of an otherwise overwhelming sea of data. Although we’ve made some great strides, it’s clear that we’ve only just begun."

And so the work continues. Biocomputing’s current set of siRNA web tools will be followed by improvements based on examining all known siRNA experiments. The Biocomputing group is also collaborating with Carl Novina, a postdoc in Phillip Sharp’s lab in the Biology Department at MIT, who has developed an alternative method of predicting siRNA. Based on these contributions, Biocomputing intends to improve the predictive accuracy of the tool and provide a scoring system that will rank the efficacy of possible hits.

Kelli Whitlock | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Health and Medicine:

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>