Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hints into development of osteoporosis

05.03.2003


Defects in a protein called alphaV beta3 ntegrin appear to contribute to the development of osteoporosis, and these effects can be reversed by enhancing a protein called macrophage-colony-stimulating factor (M-CSF), according to research at Washington University School of Medicine in St. Louis.



The study appears in the first March issue of the Journal of Clinical Investigation and is published online March 4.

"Because of our previous research with these proteins, new drugs already are in clinical trials," says lead investigator Steven L. Teitelbaum, M.D., the Wilma and Roswell Messing Professor of Pathology and Immunology. "But we still do not understand how these proteins interact to affect bone-cell development. This study brings us significantly closer to determining that mechanism."


Osteoporosis, a condition that results in weakened, brittle bones, afflicts roughly 50 percent of Caucasian and Asian women after age 65. It develops when bone is broken down at a faster rate than it is synthesized. Therefore, curing the disease and others like it depends on understanding osteoclasts -- cells responsible for eroding bone -- and determining why they sometimes become overly active.

Teitelbaum’s team previously determined that M-CSF helps unspecialized bone cells develop into mature osteoclasts. Without enough M-CSF to encourage osteoclast growth, animals develop abnormally dense bone. Similarly, it is known that blocking alphaV beta3 integrin in animal models causes failure of osteoclast function. However, it is unclear precisely how M-CSF or alphaV beta3 integrin influence osteoclast development.

The absence of beta 3 (part of the alphaV beta3 integrin) in precursor cells has a curiously different effect on cells in a petri dish compared with cells in living animals. When grown in a dish, abnormally few osteoclasts develop, and those that do develop are dysfunctional. In animals, however, precursor cells lacking beta3 produce abnormally high numbers of osteoclasts.

"This paradox suggests that something in the living animal interacts with beta3 during the process of osteoclast differentiation," Teitelbaum explains.

His team discovered the interaction may involve M-CSF. When they took precursor cells from mice lacking beta3 and put them in a petri dish very few became osteoclasts. But when levels of M-CSF were increased, the stunted growth effect was reversed. Furthermore, they determined that a particular structure on the surface of the cell (c-Fms tyrosine 697, a component of the protein designed to bind to M-CSF) appears to be largely responsible for this interaction.

"The interaction between M-CSF and alphaV beta3 integrin is intriguing and may help explain some of the less-understood aspects of animal models of osteoporosis," Teitelbaum says.

Because of this interaction, Teitelbaum and colleagues also explored whether alphaV beta3 integrin and M-CSF are involved in the same signaling pathway that causes precursor cells to differentiate into osteoclasts. They found increased levels of M-CSF also restored activity of externally regulated kinases (ERKs) and a protein called c-Fos, which are critical for stimulating the cascade of events that lead to bone-cell differentiation. Since alphaV beta3 integrin also is known to contribute to the activation of ERKs and c-Fos, the team concludes that the alphaV beta3 integrin and M-CSF collaborate in the process of osteoclast differentiation.



Faccio R, Takeshita S, Zallone A, Ross FP, Teitelbaum SL. c-Fms and the avb3 integrin collaborate during osteoclast differentiation. Journal of Clinical Investigation, March 2003.

Funding from the National Institutes of Health, Pharmacia Corp, the Italian Foundation for Cancer Research and the Italian Space Agency supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>