Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial Infections Alter Allergic Response

25.02.2003


Findings Support Hygiene Hypothesis



Researchers at National Jewish Medical and Research Center have gathered strong experimental support for the hygiene hypothesis, a proposed explanation for the worldwide rise in asthma and allergies. The research team, led by Richard Martin, M.D., found that early infection with the bacterium Mycoplasma pneumoniae reduced a mouse’s subsequent response to allergens. Alternatively, mice exposed to allergens prior to infection, developed a stronger allergic response. The research team is reporting its results in the March 2003 issue of the journal Infection and Immunity.

"For the first time, we have shown that a bacterial infection can modify the allergic response," said Dr. Martin, Vice Chair of the Department of Medicine at National Jewish. "Timing is everything, however. Our results suggest that M. pneumoniae, or a related pathogen, could help prevent asthma and other allergic diseases, but only if the infection occurs before a person is sensitized to an allergen."


Asthma and allergies have both been on the rise for several decades, especially in developed countries. The hygiene hypothesis has offered one explanation for this increase: compared with the past, children living in these countries today are exposed to fewer infectious organisms, which are necessary to properly train their developing immune systems. As a result, their immune systems overreact to relatively harmless irritants, leading to allergies and asthma.

So far, however, most evidence both for and against the hygiene hypothesis has been indirect and observational. The National Jewish research team sought more direct evidence using a mouse model of asthma and the bacterium M. pneumoniae, a common cause of community-acquired pneumonia.

In their study, Martin and his colleagues inoculated mice with either the bacterium or with a saline solution. Then all the mice were made allergic to the egg protein ovalbumin. Two weeks later, the mice were then exposed to the ovalbumin again, and their allergic response was evaluated.

On several measures, the mice that had been infected showed a milder reaction to the ovalbumin than did the control mice. Bronchial hyperresponsiveness (a measure of the "twitchiness" of the airways of these asthma-prone mice), levels of the cytokine IL-4, and total white cell count in the airways were all lower in the previously infected mice than in mice who were not infected. Levels of gamma interferon, which is associated with a healthy non-allergic immune response, were higher in the previously infected mice.

When mice were first sensitized and exposed to ovalbumin, then infected with bacteria, they showed greater bronchial hyperresponsiveness and airway inflammation than did control mice.

"Our results support the hygiene hypothesis," said lead author Hong Wei Chu, M.D. "Although mice are clearly different from humans, this kind of data, generated in a controlled experiment, adds important new evidence to help evaluate the hygiene hypothesis."


William Allstetter | EurekAlert!
Further information:
http://www.nationaljewish.org/news/hygiene_martin_022503.html
http://www.nationaljewish.org/faculty/chu.html
http://www.nationaljewish.org/faculty/martin.html

More articles from Health and Medicine:

nachricht UTMB researchers have discovered a new antiviral mechanism for dengue therapeutics
14.07.2020 | University of Texas Medical Branch at Galveston

nachricht Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents
08.07.2020 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

When Concrete learns to pre-stress itself

15.07.2020 | Architecture and Construction

New lithium battery charges faster, reduces risk of device explosions

15.07.2020 | Power and Electrical Engineering

A new path for electron optics in solid-state systems

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>