Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teasing apart the molecules of life

24.02.2003


Researchers devise new technique and measure the forces required to unzip DNA



Fifty years after James Watson and Francis Crick’s publication of the structure of DNA, research in the latest issue of the Journal of Biology shows how scientists can now measure the forces needed to tear the DNA double helix apart. The work was carried out using the first successful simultaneous combination of two important techniques for looking at single molecules - single molecule fluorescence and optical trapping.
Optical trapping, or ’optical tweezers’, uses laser beams to counteract, and hence reveal, the tiny forces involved in the complex interactions between molecules. Single molecule fluorescence enables researchers to study biological systems on a molecule by molecule basis, by lighting up parts of the molecule in particular circumstances. The combination of the two methods applied to a single molecule has been impossible up until now because the light from the lasers used in conventional optical traps is too bright to allow single molecule florescence to be seen.

Matthew Lang, Polly Fordyce and Steven Block devised a new method, which uses special filters and specific fluorescence labels, to successfully combine the techniques of optical trapping and single-molecule fluorescence for the first time. They used this new method to simultaneously examine the structural and mechanical changes occurring as a small fragment of DNA was ripped apart.



The authors of this study, based at the University of Stanford, California, believe that their new technique will have a major impact in a wide range of biological investigations.

"We anticipate that this technique will have broad applicability to the study of fundamental biological questions"

Single molecule experiments allow scientists to study rare molecules that can be impossible to look at in complex mixture of chemicals found in the cells of our body. Many of these molecules may play important roles in the development of disease or are simply essential to maintenance of life. The published study provides another much-needed tool to help science improve our understanding of how our bodies work and what happens when they go wrong.

This article is available free of charge, in line with the publisher’s policy of open access to original research: http://www.biomedcentral.com/html/info/about/block01apress.html

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/info/about/pr-releases?pr=20030221b

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>