Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alcohol Researchers Identify a Genetic Basis of Pain Response

21.02.2003


A common genetic variant influences individual responses and adaptation to pain and other stressful stimuli and may underlie vulnerability to many psychiatric and other complex diseases, reports David Goldman, M.D., Chief, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, and colleagues at NIAAA and the University of Michigan. COMT val158met Genotype Affects m-Opioid Neurotransmitter Responses to a Pain Stressor appears in the February 21 issue of Science (299:1240, 2003).



"Emotional response to stress contributes in many drinkers to the development of alcoholism," said George Kunos, M.D., Ph.D., Scientific Director, Division of Intramural Clinical and Biological Research, NIAAA. "Dr. Goldman and his colleagues have uncovered a genetic explanation for why some individuals and groups may be especially susceptible to consuming alcohol and to increasing their consumption in response to stress."

Earlier reports by first author Jon-Kar Zubieta, M.D., Ph.D., Department of Psychiatry and Mental Health Research Institute and Department of Radiology, University of Michigan (Science 293:311, 2001) and others showed that responses to pain vary considerably from one person to another, with some of the difference in sensitivity attributable to genetic factors. Subsequent work showed that some of these effects were due to gender-related factors (Journal of Neuroscience 22:5100, 2002). For the current study, Drs. Goldman, Zubieta, and their colleagues used positron emission tomography (PET) targeting the endogenous opioid system to examine the effects of a specific genetic variant on neurochemical brain responses to sustained pain. The researchers also used questionnaires that measure pain-related sensory and affective qualities and internal emotional state to link the neurochemical responses to participants’ psychological and physical experience of the pain challenge.


The cathechol-O-methyltransferase (COMT) gene encodes a major enzyme involved in the metabolism of the neurotransmitters dopamine (a chemical messenger involved in motivation and reward) and norepinephrine (a chemical messenger involved in sympathetic nervous system stimulation and inhibition). The val158met variant of the COMT gene codes the substitution of valine (val) by methionine (met) and is associated with a three- to fourfold reduction in COMT enzyme activity. This is a common genetic variant such that the distribution of the three genotypes in the general population is approximately 1/3,1/2 and 1/6. Previous research has linked val158met genotypes to a number of behavioral diseases with complex origins, including obsessive-compulsive disease and schizophrenia.

Drs. Goldman, Zubieta, and colleagues hypothesized that variations in COMT activity conferred by the various val158met genotypes might influence functions regulated by dopamine and adrenergic/noradrenergic (epinephrine/norepinephrine) neurotransmission. One such system, the m-opioid neurotransmitter system, typically is activated in response to prolonged pain or stress. To test their hypothesis, the researchers examined 15 men and 14 women genotyped with respect to the val158met polymorphism. The participants were randomized and blinded during the infusion of painful and nonpainful saline solutions.

As anticipated, the researchers who monitored neurochemical changes observed significant effects of genotype on m-opioid receptor binding and system activation. Compared with heterozygotes (individuals with one copy of each allele), individuals with two copies of the met158 allele and lowest COMT enzyme activity showed diminished regional m-opioid system responses, higher sensory and affective ratings of pain, and a more negative internal state. Persons with two copies of the val158 allele and greater COMT enzyme activity demonstrated opposite effects. The regions of the brain showing these changes included the thalamus, a key pain sensory relay station in the pathway for pain perception, and the amygdala, a region of the brain integral for the emotions of anxiety and distress.

"These data emphasize the need for a systems-level approach to neurobiological processes whereby genetic variation, neuronal functional measures, and phenotypic traits [all physical qualities of the behaving organism] are fully integrated," the authors concluded. The study is available to members of the press from Science (telephone 202/326-6440 or email scipak@aaas.org).

For an interview with Dr. Goldman, please telephone the NIAAA Press Office. Additional alcohol research information, including publications from NIAAA’s genetics research program are available at www.niaaa.nih.gov.

For an interview with Dr. Zubieta, please telephone Ms. Kara Gavin, University of Michigan Health System, 734/764-2220. The National Institute of Dental and Craniofacial Research supported the study in part through grants to the University of Michigan authors.

Ann Bradley | EurekAlert!
Further information:
http://www.niaaa.nih.gov/press/2003/pain.htm

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>