Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers study how gene level variations in blood affect immunity

13.02.2003


Differences in people seem to run in the blood, according to a recent study that examines which genes are active in blood cells. The work, published in this week’s online issue of the Proceedings of the National Academy of Sciences, found that the levels of several genes used by blood cells vary from person to person.



"Nobody had taken this broad a look at genetic variation in the blood of healthy people," said David Relman, MD, associate professor of medicine at Stanford and a co-author of the study.

People vary greatly in their reactions to bacteria and viruses; some individuals fall prey to every bug that comes along while others go through winter sniffle-free. Relman, along with Patrick Brown, PhD, professor of biochemistry, and research assistant Adeline Whitney thought these differences might show up when looking at which genes are active in circulating blood cells.


To find out the extent and nature of the differences in gene activity in people’s blood, Relman and his colleagues drew blood from 75 healthy people and extracted a molecule called RNA. RNA is produced by active genes and can be used to identify which genes are being expressed in a given sample. They then attached a fluorescent molecule to the RNA and applied the samples to a gene chip - a glass slide dotted with human genes. If a sample contained RNA corresponding to a gene on the chip, the fluorescently labeled RNA would bind to the spot and produce a visible signal. The bigger the signal, the more RNA was present, and therefore the greater the gene expression. Whitney then compared which spots varied in brightness among the samples.

The blood used in this analysis contained a variety of cells, including red blood cells that carry oxygen to the tissues and immune cells that fight disease. The red blood cells don’t contain nuclei and therefore don’t produce RNA. That leaves immune cells as the only cells making RNA in the blood sample. Any differences found in the pattern of active genes resulted from these disease-fighting cells.

A few genes stood out as being used at varying levels in different people. Some of these could be used to distinguish between men and women. For example, women use different levels of genes whose proteins respond to an immune protein called interferon. Researchers had suspected that genes in the interferon pathway might have a role in the higher risk of autoimmune diseases among women.

The researchers also found variations in two genes that weren’t previously documented as being active in blood cells. One is a gene that makes the prion protein - the protein altered in people who have Creutzfeldt-Jakob disease. Another surprisingly variable gene was BRCA1, which is mutated in an inherited form of breast cancer. It could turn out that levels of the prion protein or BRCA1 in the blood play some role in determining the risk for prion-related diseases or cancer.

In addition to the variation of gene expression among different people, the researchers found genes that varied according to the time of day that blood was drawn. Other genes were used at higher or lower levels depending upon the age of the blood donor - a finding that could eventually help doctors understand why older people are more prone to some illnesses.

Relman pointed out that it’s too early to know why people use genes at higher or lower levels in blood cells, and the consequences of this variability. "It may be that some people confronted a virus or had a cold the week before, or had different environmental experiences," he said.

He added that despite the differences, there was remarkable similarity in the genes used in the blood cells among the study subjects. "It was surprising that the degree of variability was as small as it turns out to be," he said. This finding bodes well for using gene expression in blood to distinguish between healthy people and those with an infectious disease. Because people are usually quite similar, any disease-related variation should stand out.


Other Stanford researchers who contributed to the paper include MD/PhD students Maximillian Diehn, PhD, and Ash Alizadeh, PhD; postdoctoral fellow Stephen Popper, DSc; and medical student Jennifer Boldrick.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACTS: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Neale Mulligan | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>