Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find calcium is key to slowing colorectal cancer growth

11.02.2003


Allowing calcium to get inside colorectal cancer cells may be one way to stop their growth.

Researchers at Jefferson Medical College and the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia knew that the same bacterial toxin that causes traveler’s diarrhea can stem the growth of metastatic colorectal cancer cells. Now, they may have found out how.

The scientists discovered that the toxin appears to open a cellular door, permitting calcium into tumor cells, which in turn somehow slows cell division. The discovery may lead to new methods of treating colorectal cancer, perhaps by combining the toxin with chemotherapy drugs and other agents.



GianMario Pitari, M.D., Ph.D., assistant professor of medicine at Jefferson Medical College of Thomas Jefferson University, Scott Waldman, M.D., Ph.D., Samuel M.V. Hamilton Family Professor of Medicine and director of the Division of Clinical Pharmacology at Jefferson Medical College, and their co-workers report their findings February 10 in the Proceedings of the National Academy of Sciences Online Edition.

Drs. Waldman and Pitari had previously shown that when the toxin, known as ST, hooks up with a receptor, GCC, on the surface of metastatic colorectal cancer cells, metastatic colorectal cancer cell growth slows considerably. Treating the cells with ST didn’t kill them, but rather lengthened the time of the cell growth cycle, slowing the cells’ growth and spread. The current research takes this work one step further, providing one potential mechanism for this growth inhibition.

"Dietary calcium is the mediator of this antiproliferative effect," says Dr. Pitari, who adds that dietary calcium has been believed to have a role in preventing the formation of polyps and cancer in the colon. "Now, we show that one of the mechanisms by which dietary calcium works is through this pathway. The toxin activates the receptor, GCC, causing an opening of a channel and an influx of calcium into the tumor cell. This influx causes a reduction of cancer cell growth. Somehow there is an interaction between the toxin and dietary calcium in blocking the growth of the tumor.

"The mechanism by which this occurs is very specific and a completely new pathway," he says. "No one has linked this pathway to antiproliferation and inhibition of tumor DNA synthesis," he notes.

In the laboratory, Drs. Pitari, Waldman and their co-workers, including internationally renowned electrophysiologist Andre Terzic, M.D., Ph.D. at the Mayo Clinic in Rochester, Minn., discovered that when ST binds to GCC on the cancer cell surface, a molecule called cyclic GMP is produced. Cyclic GMP, in turn, opens up a calcium channel in the cancer cell, permitting calcium to flow in. The calcium then imparts a signal that slows cancer cell division.

Drs. Pitari and Waldman see several implications from these results. "We think you can use the toxin as an intravenous infusion to treat cancer metastases," says Dr. Pitari. "The toxin will not cross the intestinal lumen, meaning there won’t be the side effects of diarrhea. In this case, you could have only the therapeutic effects of the toxin on a metastatic tumor. We think it could be one way to treat patients who had surgery on the primary tumor, to prevent the formation of metastases or to even treat metastases."

Dr. Waldman explains that when the toxin hooks up with the GCC receptor, it causes two events in the intestine: diarrhea and cell growth inhibition, each through a different pathway. One pathway leads to secretion of water and electrolytes. The other leads to calcium entering the cancer cell and blocking DNA synthesis. "We propose blocking the pathway leading to diarrhea and leaving only the positive effect," says Dr. Pitari. "This might provide a great opportunity to treat the cancer locally. It might also work synergistically with other anticancer drugs."

Next, says Dr. Waldman, the scientists plan to create human colorectal cancer models in so-called nude mice, animals without immune systems, to see if ST can inhibit the growth of tumors in animals.

The technology involved in the research has been licensed from Thomas Jefferson University to Targeted Diagnostics and Therapeutics, Inc. (TDT), based in Exton, Pa. TDT has licensed the rights for the development of therapeutics from the work to Millennium Pharmaceuticals, Inc. in Boston.


###
Contact: Steve Benowitz or Phyllis Fisher
215-955-6300
After Hours: 215-955-6060
E-Mail: steven.benowitz@mail.tju.edu


Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>