Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve chaotic heartbeat mystery

06.02.2003


Fatal, electrical chaos can develop in the hearts of otherwise healthy people who produce a defective accessory protein called ankyrin-B, reports W. Jonathan Lederer of the University of Maryland Biotechnology Institute (UMBI) and collaborators, in the February 6 issue of the scientific journal Nature.



By discovering the molecular and cellular causes of the electrical chaos-known as Long QT Syndrome Type 4, or LQT4-Lederer and collaborators open the door to possible therapies and diagnostics for this and related heart diseases. The work also provides a clue to how important, specific proteins are organized within heart cells.

Several years ago, clinical researchers in France, headed by Denis Escande, discovered an inheritance pattern in members of a family who had been dying suddenly and unexpectedly in the prime of life. Lederer’s team at UMBI and the University of Maryland at Baltimore and researchers at Duke University, headed by Vann Bennett, collaborated with the French by applying state-of-the-art heart physiology tools to mouse heart cells in order to find the cause of the sudden deaths.


Cardiovascular disease, including cardiac arrhythmia and sudden cardiac death and stroke are the leading causes of death worldwide. The term QT in LQT4 and other long QT syndromes refers to a time period, normally about 300 milliseconds (read between points Q and T on an electrocardiogram) when each electrical pulse, or action potential, starts a heart beat. Longer QT periods can signal heart problems.

The researchers discovered that the LQT4 is linked to a genetic defect in humans and in a mutant mouse developed by the Bennett laboratory. The defect is expressed as an inadequate amount of an important adaptor protein called ankyrin-B that is involved in enriching cells with key proteins at specific locations within the cell. Lederer’s group studied the dynamic physiology of single cells in the Bennett mouse.

The reduction or absence of functional ankyrin-B in the cells causes proteins involved in cellular calcium regulation to be inadequate or absent from critical locations within the cell. Cells load up with too much calcium. The change in calcium causes the heart to beat improperly and, in the case of LQT4, chaotically. The electrical chaos that can cause death appears to be triggered by unexpected stress and possibly an increase in adrenaline - as would happen when individuals are startled, says Lederer. Even then, the death-causing electrical chaos is rare.

Humans and animals are afflicted with LQT4 when only one of the two genes for ankyrin-B is defective or absent. When both are absent, the condition is lethal.

However, says Lederer, many individuals survive for a long time with the defect. The rare occurrence of the development of calcium-dependent electrical chaos in the heart means that most individuals have normal heart behavior even when they are afflicted with LQT4.

Finding the defective protein to be ankyrin-B was somewhat of a surprise, says Lederer, a world leader in studies ion channels and calcium sparks in heart cells. "We thought it would make sense if the defective protein were a channel protein. The other long QT syndromes are caused by defects in channel proteins. This is the first example of a cytoskeletal or structural protein causing such an arrhythmia."

Lederer and his team collaborated with other primary investigators from Duke University and the Howard Hughes Institute headed by Vann Bennett and Peter Mohler and with investigators at the French Institute of Health and Medical Research (INSERM) in Nantes, France, headed by Denis Escande. Key local investigators on the Lederer team included S. Guatimosim, L-S. Song and K. Dilly from MBC and T. B. Rogers and W. duBell from the School of Medicine at University of Maryland, Baltimore.


The University of Maryland Biotechnology Institute was mandated by the state of Maryland legislature in 1985 as "a new paradigm of state economic development in biotech-related sciences." With five major research and education centers across Maryland, UMBI is dedicated to advancing the frontiers of biotechnology. The centers are the Center for Advanced Research in Biotechnology in Rockville; Center for Biosystems Research in College Park; and Center of Marine Biotechnology, Medical Biotechnology Center, and the Institute of Human Virology, all in Baltimore.


Steve Berberich | EurekAlert!
Further information:
http://www.umbi.umd.edu/

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>