Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a genetic connection in Sudden Infant Death Syndrome (SIDS)

20.01.2003


Information could help identify at-risk individuals and estimate

Researchers at Rush-Presbyterian-St. Luke’s Medical Center have found evidence supporting a relationship between SIDS and the 5-HTT gene in both African-Americans and Caucasians. They found a significant positive association between SIDS and the L/L genotype, and between SIDS and the 5-HTT L allele, and a negative association between SIDS and the S/S genotype. This information might eventually lead to the identification of infants at risk for SIDS.

Sudden Infant Death Syndrome (SIDS) claims the lives of more than 2,500 American infants every year, and African American children are far more likely to fall victim than Caucasians. Previous research into a genetic connection has pointed to a possible relationship between SIDS and a gene (5-HTT) that regulates serotonin uptake.



Dr. Debra E. Weese-Mayer, professor of pediatrics at Rush-Presbyterian-St. Luke’s Medical Center, led the new study. The study will appear in an upcoming print issue of the American Journal of Medical Genetics and will be published online January 17 via Wiley InterScience.

This study of SIDS and the 5-HTT gene was motivated by previous observations of decreased serotonergic receptor binding in SIDS cases. The 5-HTT gene regulates membrane uptake of serotonin and was therefore considered a likely candidate for SIDS studies. Furthermore, a recent Japanese study of the 5-HTT gene found an association between SIDS and the L/L genotype and L allele.

Seeking a similar association in an American population, researchers collected DNA samples from 87 U.S. SIDS cases, some Caucasian and some African-American. They also collected DNA from two sets of control subjects. The first set was screened for family history of SIDS or other relevant conditions, then matched to the SIDS cases for ethnicity and gender. The second set of controls included 334 random DNA samples used to determine population genotype frequencies. For each DNA sample, the 5-HTTLPR polymorphism was genotyped.

The results suggest an association between SIDS and the 5-HTT gene. "There was a significant difference in genotype distribution and an increased frequency of the L allele in SIDS cases versus ethnicity/gender matched controls with no family history of SIDS or autonomic dysfunction," the authors report. "Furthermore, there were significantly fewer SIDS cases versus controls with no long allele (S/S genotype) in the entire cohort and within the Caucasian subgroup; and significantly more SIDS cases versus controls with no short allele (L/L genotype) in the entire cohort."

The researchers also found that genotype frequency distributions and allele frequency distributions for 5-HTT were significantly different when evaluated across all ethnic groups. Despite ethnic variations, however, SIDS cases were more likely than controls to have the long allele in the Japanese, Caucasian, and African American study samples.

The study’s results are compelling, though limited by the research design that included only confirmed anonymous SIDS cases from the NIH-supported University of Maryland Brain Bank, according to Dr. Weese-Mayer. Further studies should encompass larger numbers and more ethnicities and also include the 5-HTT intron 2 VTNR which influences gene expression. Likewise, Dr. Weese-Mayer et al pointed out that "recognizing the strong relationship between tobacco exposure (prenatal and postnatal) and SIDS risk, future studies of genetic polymorphisms must also include detailed smoking history to clarify the role of gene-environment interaction."

"If a larger data set reflects observations similar to those in this report," the authors conclude, "the serotonergic system will represent a key area for further investigation into the causal basis for SIDS, with the goal of identifying genetic risk factors that will aide in recognizing at-risk individuals who require specialized intervention strategies and in counseling families as to the risk of recurrence."


###
Article: "Sudden Infant Death Syndrome: Association with a Promoter Polymorphism of the Serotonin Transporter Gene." Debra E. Weese-Mayer, Elizabeth M. Berry-Kravis, Brion S. Maher, Jean M. Silvestri, Mark E. Curran, and Mary L. Marazita, American Journal of Medical Genetics, January 17, 2003. For more information visit http://www.interscience.wiley.com/ajmg

The Center for SIDS Research and Disorders of Respiratory Control in Infancy and Childhood at Rush Children’s Hospital of Rush-Presbyterian-St. Luke’s Medical Center is a resource for infants, children and their families. Center physicians are internationally recognized for their research contributions in respiratory physiology. The Center includes the Pediatric Respiratory Physiology Laboratory, equipped with state-of-the-art technology to provide a physiological assessment of respiration. For more information visit: http://www.rush.edu/patients/children/services/specialties/respiratory


John M. Pontarelli | EurekAlert!
Further information:
http://www.rush.edu/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>