Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a genetic connection in Sudden Infant Death Syndrome (SIDS)

20.01.2003


Information could help identify at-risk individuals and estimate

Researchers at Rush-Presbyterian-St. Luke’s Medical Center have found evidence supporting a relationship between SIDS and the 5-HTT gene in both African-Americans and Caucasians. They found a significant positive association between SIDS and the L/L genotype, and between SIDS and the 5-HTT L allele, and a negative association between SIDS and the S/S genotype. This information might eventually lead to the identification of infants at risk for SIDS.

Sudden Infant Death Syndrome (SIDS) claims the lives of more than 2,500 American infants every year, and African American children are far more likely to fall victim than Caucasians. Previous research into a genetic connection has pointed to a possible relationship between SIDS and a gene (5-HTT) that regulates serotonin uptake.



Dr. Debra E. Weese-Mayer, professor of pediatrics at Rush-Presbyterian-St. Luke’s Medical Center, led the new study. The study will appear in an upcoming print issue of the American Journal of Medical Genetics and will be published online January 17 via Wiley InterScience.

This study of SIDS and the 5-HTT gene was motivated by previous observations of decreased serotonergic receptor binding in SIDS cases. The 5-HTT gene regulates membrane uptake of serotonin and was therefore considered a likely candidate for SIDS studies. Furthermore, a recent Japanese study of the 5-HTT gene found an association between SIDS and the L/L genotype and L allele.

Seeking a similar association in an American population, researchers collected DNA samples from 87 U.S. SIDS cases, some Caucasian and some African-American. They also collected DNA from two sets of control subjects. The first set was screened for family history of SIDS or other relevant conditions, then matched to the SIDS cases for ethnicity and gender. The second set of controls included 334 random DNA samples used to determine population genotype frequencies. For each DNA sample, the 5-HTTLPR polymorphism was genotyped.

The results suggest an association between SIDS and the 5-HTT gene. "There was a significant difference in genotype distribution and an increased frequency of the L allele in SIDS cases versus ethnicity/gender matched controls with no family history of SIDS or autonomic dysfunction," the authors report. "Furthermore, there were significantly fewer SIDS cases versus controls with no long allele (S/S genotype) in the entire cohort and within the Caucasian subgroup; and significantly more SIDS cases versus controls with no short allele (L/L genotype) in the entire cohort."

The researchers also found that genotype frequency distributions and allele frequency distributions for 5-HTT were significantly different when evaluated across all ethnic groups. Despite ethnic variations, however, SIDS cases were more likely than controls to have the long allele in the Japanese, Caucasian, and African American study samples.

The study’s results are compelling, though limited by the research design that included only confirmed anonymous SIDS cases from the NIH-supported University of Maryland Brain Bank, according to Dr. Weese-Mayer. Further studies should encompass larger numbers and more ethnicities and also include the 5-HTT intron 2 VTNR which influences gene expression. Likewise, Dr. Weese-Mayer et al pointed out that "recognizing the strong relationship between tobacco exposure (prenatal and postnatal) and SIDS risk, future studies of genetic polymorphisms must also include detailed smoking history to clarify the role of gene-environment interaction."

"If a larger data set reflects observations similar to those in this report," the authors conclude, "the serotonergic system will represent a key area for further investigation into the causal basis for SIDS, with the goal of identifying genetic risk factors that will aide in recognizing at-risk individuals who require specialized intervention strategies and in counseling families as to the risk of recurrence."


###
Article: "Sudden Infant Death Syndrome: Association with a Promoter Polymorphism of the Serotonin Transporter Gene." Debra E. Weese-Mayer, Elizabeth M. Berry-Kravis, Brion S. Maher, Jean M. Silvestri, Mark E. Curran, and Mary L. Marazita, American Journal of Medical Genetics, January 17, 2003. For more information visit http://www.interscience.wiley.com/ajmg

The Center for SIDS Research and Disorders of Respiratory Control in Infancy and Childhood at Rush Children’s Hospital of Rush-Presbyterian-St. Luke’s Medical Center is a resource for infants, children and their families. Center physicians are internationally recognized for their research contributions in respiratory physiology. The Center includes the Pediatric Respiratory Physiology Laboratory, equipped with state-of-the-art technology to provide a physiological assessment of respiration. For more information visit: http://www.rush.edu/patients/children/services/specialties/respiratory


John M. Pontarelli | EurekAlert!
Further information:
http://www.rush.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>