Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough gives spinal injury sufferers a standing start

16.01.2003


For the first time, engineers have enabled paralysed people to stand up and balance for significant periods without holding an external support. This is an important breakthrough in helping individuals with spinal cord injuries to start standing again for useful lengths of time – up to seven minutes have been achieved in experiments.



The cutting-edge research project that achieved this advance was carried out by the Department of Mechanical Engineering at the University of Glasgow with funding from the Swindon based Engineering and Physical Sciences Research Council

The project focused on the development and evaluation of techniques that use low levels of pulsed electrical current to stimulate the nerves that control muscle movement. The current replaces signals from the brain, which do not reach the nerves on account of the spinal cord injury. This electrical stimulation makes the paralysed muscle contract and partially restores lost body functions.


The initiative has built on earlier work by the same research team – an acknowledged leader in the field and the first to demonstrate, in practice, unsupported standing for paraplegics. The challenge was to allow spinally-injured people to stand in a stable fashion for significant periods of time, without having to hold on to a frame or walker. The team has achieved this by stimulating the muscles controlling the ankle by an amount directly related to the person’s standing posture. For example, if the person leans further forward, the stimulation is automatically increased to push them back to a more upright position. This approach is known as feedback control.

The team is led by Professor Ken Hunt, Head of the University’s Centre for Rehabilitation Engineering. The research was carried out in close collaboration with the Queen Elizabeth National Spinal Injuries Unit at Glasgow’s Southern General Hospital. Professor Hunt says: “Enabling spinally-injured people to stand again and remain balanced for this amount of time represents major progress. This has never been achieved before in experiments with human subjects”.

Jane Reck | EurekAlert!
Further information:
http://fesnet.eng.gla.ac.uk/CRE

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>