Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vampire bat bite packs potent clot-busting potential for strokes

10.01.2003


A potent clot-busting substance originally extracted from the saliva of vampire bats may be used up to three times longer than the current stroke treatment window – without increasing the risk for additional brain damage, according to research reported in today’s rapid access issue of Stroke: Journal of the American Heart Association.



The vampire bat saliva-derived clot buster is called Desmodus rotundus salivary plasminogen activator (DSPA) or desmoteplase. DSPA targets and destroys fibrin, the structural scaffold of blood clots, says senior author Robert Medcalf, Ph.D. NH & MRC senior research fellow at Monash University Department of Medicine at Box Hill Hospital in Victoria, Australia.

"When the vampire bat bites its victim, it secretes this powerful clot-dissolving (fibrinolytic) substance so that the victim’s blood will keep flowing, allowing the bat to feed," Medcalf explains.


In the mid-1980s, Wolf-Dieter Schleuning, M.D., Ph.D., now chief scientific officer of the German biotechnological company PAION GmbH, found that the vampire bat enzyme was genetically related to the clot buster tissue plasminogen activator (t-PA) but was more potent. Medcalf and Schleuning were pioneers in the cloning and the study of gene expression of t-PA and were among the first scientists to spot its potential use for heart attack.

The only Food and Drug Administration-approved clot buster for treating ischemic stroke is intravenous recombinant tissue plasminogen activator, (rt-PA). Ischemic strokes are caused when a blood clot or series of clots block blood supply to the brain. rt-PA is administered to a small percentage of stroke patients because current protocols allow treatment only within three hours of stroke onset. Also, rt-PA has been shown to promote brain cell death in some animal studies.

The clot-busting activity of DSPA increases about 13,000-fold when exposed to fibrin. The activity of rt-PA increases only 72-fold when exposed to fibrin.

Researchers injected either DSPA or rt-PA into the brains of mice, then tracked the survival of brain cells. They discovered that while DSPA zeros in on fibrin, it had no affect on two brain receptors that can promote brain damage, Medcalf says. In contrast, rt-PA greatly enhanced the degree of brain cell death following receptor activation and may therefore be detrimental if it’s delivered too long after stroke onset.

The highly fibrin-specific activity demonstrated by DSPA may be an important advantage over rt-PA. It is this single-minded clot-busting action that has stroke researchers especially intrigued because while rt-PA is effective at breaking up and dissolving clots, it must be given quickly – within just three hours of the onset of stroke symptoms. By contrast, Medcalf says DSPA could be a safe treatment option for a longer period since it has no detrimental effect on brain cells. The three-hour time window often allows insufficient time for patients to undergo imaging tests to determine that they have a true ischemic stroke before rt-PA can initiated, he says.

"This report provides data suggesting a potential advantage of a type of plasminogen activator derived from bat saliva over t-PA, the only FDA-approved treatment for selected patients with acute ischemic stroke," says Larry Goldstein, M.D., chairperson of the American Stroke Association Advisory Committee. "It needs to be understood that this study is limited to mice without stroke and focused only on toxicity. Whether this approach will prove either safe or efficacious in improving stroke outcomes requires further testing."

Goldstein is director of the Center for Cerebrovascular Disease at Duke University in Durham, N.C.

DSPA is being tested up to nine hours after stroke onset in human stroke patients in Europe, Asia and Australia. A U.S. study could begin this year, Schleuning says. Other co-authors are Gabriel T. Liberatore, Ph.D, André Samson; and Christopher Bladin, M.D.


###
CONTACT: For journal copies only,
please call: (214) 706-1396
For other information, call:
Carole Bullock: (214) 706-1279
Bridgette McNeill: (214) 706-1135

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>