Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel function of gene often associated with cancer

10.01.2003


In an unusual disease known as Bloom syndrome, patients exhibit an extremely high incidence of cancers in many tissues. In fact, some experts consider Bloom syndrome to be among the most cancer-prone hereditary diseases known.



Although the illness is rare, it fascinates scientists since it can teach them more about how cancers arise and how the body normally suppresses them. Information gleaned from studies of the syndrome should provide insights into other forms of cancer, they say.

Now, working with fruit flies on the gene which, when mutated, causes Bloom syndrome in humans, scientists at the University of North Carolina at Chapel Hill have discovered more about the key mechanisms by which DNA inside cells is repaired.


A report on the findings appears in the Jan. 10 issue of the journal Science. Authors are Drs. Melissa D. Adams and Mitch McVey, both postdoctoral fellows in biology, and Dr. Jeff J. Sekelsky, assistant professor of biology and a faculty member with the UNC Program in Molecular Biology and Biotechnology. McVey is a participant in UNC’s SPIRE (Seeding Postdoctoral Innovators in Research and Education) Program.

Their new paper concerns the BLM gene, Sekelsky said. Inherited imperfections in that gene, also known as mutations, lead to the high likelihood of cancer.

A key feature of the BLM gene identified in 1995 was that it encodes an enzyme that unwinds DNA double helices, he said. BLM is a member of a family of related enzymes. Defects in other members of this family can cause distinct hereditary diseases, including Werner syndrome, in which patients experience accelerated aging. Although BLM is thought to be important in DNA repair, the precise function of the gene has remained unclear.

"In our study, we sought to determine the role of BLM in DNA repair," Sekelsky said. "We conducted our experiments in Drosophila melanogaster, the fruit fly, due to the ease of manipulating the animals genetically.

"We found that the Drosophila BLM gene has a specific function of repairing DNA breaks, such as those that occur after exposure to X-rays."

Adams, McVey and he also discovered that the aberrant DNA repair that occurs in the absence of BLM results in chromosome rearrangements similar to those seen in follicular lymphoma, the most common type of human lymphoma.

"We feel that our results represent a substantial step forward in understanding this important DNA repair gene," Sekelsky said. "This will aid in our understanding of Bloom syndrome, DNA repair pathways and, perhaps most importantly, cellular defects that lead to cancer."

The team is conducting follow-up studies to better understand those important biological processes, he said.

A grant from the Ellison Medical Foundation supported the work.

Bloom syndrome is an autosomal, recessive disorder, meaning that when both parents carry the defective BLM gene, each of their children carries a 50 percent chance of being a carrier of the defective gene, a 25 percent chance of being born with the illness and a 25 percent chance of being entirely free of it.

Besides being highly cancer-prone, children born with the syndrome are short throughout their lives, sterile and have poorly functioning immune systems.

By DAVID WILLIAMSON
UNC News Services


Note: Sekelsky, Adams and McVey can be reached at 919-843-9400 or 843-9401.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Health and Medicine:

nachricht Shipment tracking for "fat parcels" in the body
14.10.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibody-based eye drops show promise for treating dry eye disease
14.10.2019 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>