Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study identifies c-reactive protein as cause of blood clot formation

10.01.2003


Further underscoring the limitations of cholesterol screening in assessing a patient’s risk for heart disease, a new study by UC Davis physicians is the first to conclusively link C-reactive proteins (CRP) to formation of blood clots, a major cause of heart attacks, strokes and other vascular disease. Until now, CRP had been recognized mainly as a risk marker of heart disease. The study appears in the Jan. 25 print edition of the journal Circulation, a publication of the American Heart Association, and is available on the Web at www.circulationaha.org.

"The study provides further conclusive evidence that CRP, until now viewed as an ’innocent bystander’ in the formation of heart disease, is in fact a key culprit that causes inflammation in the arteries, resulting in formation of clots and plaque that lead to heart attacks and strokes," said Ishwarlal Jialal, professor of pathology and director of the Laboratory for Atherosclerosis and Metabolic Research at UC Davis School of Medicine and Medical Center.

The study demonstrates that CRP causes cells in the arteries, known as human aortic endothelial cells, to produce higher levels of an enzyme that inhibits the breakdown of clots. The enzyme, plasminogen activator inhibitor-1 (PAI-1) is also a strong risk marker for heart disease, especially in diabetics. The study used a variety of techniques to convincingly show how CRP activates PAI-1 in aortic cells, causing lesions in the arteries that ultimately lead to formation of plaque and blood clots.



The study underscores the need to use CRP screening to more accurately assess at-risk populations, according to Jialal, who is the Robert E. Stowell Endowed Chair in Experimental Pathology.

"Based on these findings, if a patient has normal cholesterol but high levels of CRP, an aggressive course of treatment is recommended to help the patient reduce the risk of heart attack, stroke and other heart diseases," said Jialal. "By relying on cholesterol alone, a physician could significantly underestimate a patient’s risk level."

High CRP levels can occur in otherwise healthy individuals, according to the study. Patients with high levels of CRP can reduce risk by losing weight, exercising on a regular basis, stopping cigarette smoking, or taking statin drugs, Jialal added.

The study also closely links CRP and PAI-1 to diabetes and metabolic syndrome, a disorder characterized by a disproportionate amount of abdominal fat, elevated blood pressure, blood sugar and triglycerides and low levels of HDL, the "good" kind of cholesterol.

"In another important discovery, this study shows that in the presence of high blood-glucose levels, CRP is especially active in the stimulation of PAI-1. As a result, the effect of CRP is especially acute for patients with diabetes and metabolic syndrome," said Sridevi Devaraj, a co-investigator and assistant professor of pathology at UC Davis. "Given the current pandemic of obesity which increases one’s risk of diabetes, the study’s insights about the active role of CRP and PAI-1 in heart disease are especially valuable."

The new study adds to the findings of another landmark study on CRP by Jialal’s team at UC Davis that showed CRP actually damages the blood vessel wall by blocking a critical "protector" protein and inhibiting nitric oxide.

"Interestingly, the new study indicates that activation of PAI-1 was unrelated to the nitric oxide inhibition identified in the earlier study," said Jialal. "This indicates that CRP has multiple, independent effects that cause heart disease."

Dan Yan Xu, a physician and postgraduate researcher in the pathology department at UC Davis, also contributed to the study.

This study was supported by grants from the National Institutes of Health, the Juvenile Diabetes Foundation and American Diabetes Association.


Copies of all news releases from UC Davis Health System are available on the Web at http://news.ucdmc.ucdavis.edu

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu/medical_center/index
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>