Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cancer gene controls blood vessel growth

17.12.2002


Scientists from the Kimmel Cancer Center at Johns Hopkins and Northwestern University have found a new target to squeeze off a tumor’s blood supply. Research published in the December 17 issue of Cancer Cell shows how a common cancer-causing gene controls the switch for tumor blood vessel growth known as angiogenesis.



Recent evidence has shown that this gene, called Id1, is important for angiogenesis, a factor in cancer progression because it provides a needed blood source to tumor cells.

The new study concludes that the Id1 gene controls the angiogenesis pathway in certain cancers by turning off the production of a protein, thrombospondin-1 (TSP-1), a naturally occurring angiogenesis suppressor.


"We found activation of the Id1 gene, which is highly expressed in melanoma, breast, head and neck, brain, cervical, prostate, pancreatic and testicular cancers, results in decreased expression of TSP-1 and increased tumor blood vessel formation," says Rhoda M. Alani, M.D., assistant professor of oncology, dermatology, molecular biology and genetics in the Kimmel Cancer Center at Johns Hopkins and director of this study.

The researchers also found TSP-1 levels that were three- to fivefold greater in mice with Id1 gene function turned off than in mice with normal Id1.

To confirm their findings, the research team monitored blood vessel growth in mice with normal and crippled Id1 genes, then added a chemical that wiped out TSP-1. Control mice with normal Id1 showed well-developed blood vessels. Mice with a non-functioning Id1 gene showed little blood vessel growth when TSP-1 was activated. When the anti-TSP chemical was added to these mice, blood vessel growth resumed.

Efforts to find a way to use TSP-1 as an anti-cancer agent are under way in animal studies. "Because TSP-1 occurs naturally throughout the body, it can’t be used as a drug," says Roberto Pili, M.D., assistant professor of oncology in the Kimmel Cancer Center and co-author of the study. "But it could potentially be paired with another molecule and programmed to be released only in tumors." In addition to TSP-1, Alani and colleagues are studying Id1 targets important in other biologic processes, including signaling pathways inside cells.


This research was funded by the National Institutes of Health and the American Cancer Society.

Co-authors include Olga Volpert at the RH Lurie Cancer Center at Northwestern University, Hashmat Sikder at Johns Hopkins, Thomas Nelius and Tetiana Zaichuk from Northwestern, and Chad Morris, Clinton Shiflett, Meghann Devlin and Katherine Conant at Johns Hopkins.

Volpert, Olga V. et al, "Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1," Cancer Cell, Dec. 2002, Vol. 2.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>