Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developing new arsenal in war against cancer

16.12.2002


In the battle against cancer, Virginia Tech researchers have developed a potential warhead to better kill cancer cells, a new missile to deliver the warhead more efficiently to the diseased areas, and a new detonation device once the warhead is in place.



In a cross-disciplinary effort, the researchers, using photodynamic therapy (PDT), have obtained results in three different areas that, used together, have the possibility of providing more efficient, less invasive, and more specific treatments for cancer and other diseases such as age-related macular-degeneration.

A long-term concept has held that one should be able to use light-activated compounds to kill diseased cells, said Karen Brewer, associate professor of chemistry. The researchers have developed new tri-metallic supra-molecules that can be positioned in exact parts of cancer cells and excited by a therapeutic wavelength at which light propagates efficiently through tissue. Only when the light hits the supra-molecules do they become toxic to the cancer cells.


The advantages are many. The non-surgical process avoids the debilitating side effects of normal chemotherapy. The system enables the scientists to place the supra-molecules at specific locations in cells and to deliver light activating the cancer-killing molecules directly at that spot in a strength that does not harm other tissue. "This allows much lower dosages of light to be effective, so we can use agents that are more aggressive and not get the side effects of chemotherapy," Brewer said.

Researchers Shawn Swavey and Alvin Holder, along with students Lee Williams and Nathan Toft, working in the Brewer laboratory, developed the new mixed-metal supra-molecular complexes (medicines) that Brewer and Brenda Winkel, professor of biology, have proven are capable of photo-cleaving DNA, a normal therapeutic target in cells. The complexes are novel molecules whose chemistry allows the researchers to append them to other units.

At present, physicians use a chemical that is exposed to light and activates oxygen in photodynamic therapy. In tumor cells, oxygen is depleted rapidly, so those treatments can run out of oxygen and not kill the entire tumor, which can return. Brewer’s new systems don’t need oxygen, and the researchers can change the wavelength of light used. "We can fine tune the compound for light-absorbing characteristics," Brewer said. "By using a lower energy, we can better penetrate the body."

Brian Storrie, professor of biochemistry, and research scientist Maria Teresa Tarrago-Trani of biochemistry have developed the "rocket" with which to deliver the cancer-killing agents to particular organelles, or parts, in the cancer cells. "We have used a polypeptide that binds to a cell surface receptor, and that molecule is over-expressed for certain cancers. We can deliver photosynthesizers to the cancer," Storrie said.

The delivery vehicle is a B-fragment of a class of toxins known as shiga toxins. The A fragment is toxic, but the B fragment is a non-toxic delivery system. Storrie developed a way to use the B fragment to deliver the photo-dynamic agents developed by Brewer into the cells. This enables the researchers to target certain kinds of cancer cells that have receptors for the B fragment and deliver the agent to the exact spot in the cell so the supra-molecule can attack that part. This allows for the destruction of many parts in the cancerous cells.

Ken Meissner, senior research scientist with the Optical Science and Engineering Research (OSER) Center at Virginia Tech is developing the "detonation device" for the supra-molecules, which are nontoxic until hit by light. His specialty is the delivery of light to the correct tissues and to the supra-molecules positioned to kill the cells. Meissner develops better ways to get the light to the tumor and to understand how light passes through tissue

Together, the three-part attack opens up huge new areas for fighting cancer. "We can attach the delivery vehicles, change the light we need, change the biological target in the cells, and design a molecule that reacts with that part," Brewer said. In other words, Brewer can develop different molecules for different areas of the cells, Storrie can develop ways to get those molecules to the right places in the cells, and Meissner can develop methods to deliver the light needed to begin the killing of cancer cells. Or, Meissner can develop a new light-delivery system to work in a certain area, and then Brewer can develop a molecule that will kill tumor cells when excited with this light, and Storrie can get the molecule there.

The possibilities are greatly expanded by the variety of supra-molecules and the interactive work of these researchers. This exciting work is in the early stages, but the researchers hope it will someday be the basis for important strides in the treatment of cancer and other diseases.

The research is being done within the OSER Photodynamics Mini-center, a joint effort between the Carilion Biomedical Institute and Virginia Tech. Research groups collaborating under the mini-center include researchers Brewer, Storrie, Meissner, and Winkel, and Yannis Besieris and Brad Davis of electrical and computer engineering, Sun Young Kim of biochemistry, and Ed Wojcik of biology, all of Virginia Tech


Researcher contact information:
Karen Brewer 540-231-6579, kbrewer@vt.edu,
Brian Storrie 540-231-6434, storrie@vt.edu,
Ken Meissner 540-231-2512, cmeissne@vt.edu

PR CONTACT: Sally Harris 540-231-6759 slharris@vt.edu


Karen Brewer | EurekAlert!
Further information:
http://www.chem.vt.edu/chem-dept/brewer/brewer.html
http://www.biochem.vt.edu/faculty/storrie.html

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>