Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy approach shows promise

16.12.2002


Vanderbilt University Medical Center investigators are reporting success with a novel gene therapy approach. Working with cells grown in the laboratory, the group is the first to repair a defective gene and demonstrate that the resulting protein product is functional, said Dr. Alfred L. George Jr., senior author of a study published Dec. 15 in the Journal of Clinical Investigation.



Although use of the approach in patients is still years in the future, the findings are an important step in showing that a particular method of gene repair is possible, said George, director of Vanderbilt’s division of Genetic Medicine.

"We have very solid evidence that we can repair messenger RNA (the copy of DNA that is used to manufacture proteins), and that the repair results in a protein that has normalized function," he said. "That’s a good sign and makes us optimistic about moving forward with this type of gene therapy strategy."


Gene therapy is a phrase that describes many different modes of gene-based treatments. The most widely used strategy seeks to put normal copies of a gene into cells with a defective gene. An alternative approach targets a defective gene for repair, either of the DNA itself or of the messenger RNA copy of the gene -- the strategy favored by George’s group. Repairing messenger RNA offers advantages over other types of gene therapy, George said, because it works specifically in cells that have messenger RNA copies of the gene. Cells that are not actively using the targeted gene will not contain any messenger RNA copies to be repaired.

"We think this approach may have a niche. It could be useful for any inherited disease, but it may have a special ability to correct a problem in a dominant disorder, George said.

The RNA repair method studied by George and colleagues employs molecules called ribozymes -- repair machines that can be engineered to correct a defect in a selected messenger RNA. The current work targets for repair a mutation that causes myotonia congenita, an inherited muscle disease with symptoms including muscle stiffness. Because myotonia congenita is not a debilitating disease, gene therapy may not be appropriate for some patients, George said, but the disease serves as an excellent model for testing ribozymes as potential gene therapeutics.

"We know a great deal about myotonia congenita," George said. "We know about the genetics and the physiology, and we have cell culture and animal models. We have many experimental armaments to study the disease."

In addition, George said, myotonia congenita provides a good test case for more severe inherited muscle diseases, such as muscular dystrophy and related disorders.

Myotonia congenita is caused by mutations in chloride channels -- donut-like pores that allow chloride ions to pass across the cell membrane. Because chloride channels are important participants in the contraction-relaxation cycle of skeletal muscle, defects in these proteins affect muscle relaxation and cause muscle stiffness.

Over 80 different myotonia congenita-associated chloride channel mutations have been identified, George said. His team targeted one of these for repair, a mutation that George and colleagues first identified in a Pennsylvania dog named Sparky.

Dr. Christopher Rogers, a former graduate student in George’s laboratory, engineered ribozymes to correct the "Sparky" defect and then introduced the ribozymes into cells harboring the mutant chloride channels. He demonstrated that the ribozymes could indeed repair the messenger RNA for the defective channels and that the resulting repaired proteins had normal chloride channel function. The repair was not effective in all cells, George said, but in a small percentage of cells, chloride channel function was completely restored.

"We know now that the ribozyme method can work; it’s effective at producing a protein with completely normal function," George said. "It would be nice if we knew it worked in the dog, and that’s the next step."

The investigators will continue studies in cells to improve the efficiency of the method before they test it in a group of Sparky’s descendants -- a dog model of myotonia congenita.


Other contributors to the Journal of Clinical Investigation study include Drs. Carlos G. Vanoye and Bruce A. Sullenger. The work was supported by the National Institutes of Health and the Muscular Dystrophy Association.

Leigh MacMillan | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities

08.07.2020 | Physics and Astronomy

Engineers use electricity to clean up toxic water

08.07.2020 | Agricultural and Forestry Science

Atomic 'Swiss army knife' precisely measures materials for quantum computers

08.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>