Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy approach shows promise

16.12.2002


Vanderbilt University Medical Center investigators are reporting success with a novel gene therapy approach. Working with cells grown in the laboratory, the group is the first to repair a defective gene and demonstrate that the resulting protein product is functional, said Dr. Alfred L. George Jr., senior author of a study published Dec. 15 in the Journal of Clinical Investigation.



Although use of the approach in patients is still years in the future, the findings are an important step in showing that a particular method of gene repair is possible, said George, director of Vanderbilt’s division of Genetic Medicine.

"We have very solid evidence that we can repair messenger RNA (the copy of DNA that is used to manufacture proteins), and that the repair results in a protein that has normalized function," he said. "That’s a good sign and makes us optimistic about moving forward with this type of gene therapy strategy."


Gene therapy is a phrase that describes many different modes of gene-based treatments. The most widely used strategy seeks to put normal copies of a gene into cells with a defective gene. An alternative approach targets a defective gene for repair, either of the DNA itself or of the messenger RNA copy of the gene -- the strategy favored by George’s group. Repairing messenger RNA offers advantages over other types of gene therapy, George said, because it works specifically in cells that have messenger RNA copies of the gene. Cells that are not actively using the targeted gene will not contain any messenger RNA copies to be repaired.

"We think this approach may have a niche. It could be useful for any inherited disease, but it may have a special ability to correct a problem in a dominant disorder, George said.

The RNA repair method studied by George and colleagues employs molecules called ribozymes -- repair machines that can be engineered to correct a defect in a selected messenger RNA. The current work targets for repair a mutation that causes myotonia congenita, an inherited muscle disease with symptoms including muscle stiffness. Because myotonia congenita is not a debilitating disease, gene therapy may not be appropriate for some patients, George said, but the disease serves as an excellent model for testing ribozymes as potential gene therapeutics.

"We know a great deal about myotonia congenita," George said. "We know about the genetics and the physiology, and we have cell culture and animal models. We have many experimental armaments to study the disease."

In addition, George said, myotonia congenita provides a good test case for more severe inherited muscle diseases, such as muscular dystrophy and related disorders.

Myotonia congenita is caused by mutations in chloride channels -- donut-like pores that allow chloride ions to pass across the cell membrane. Because chloride channels are important participants in the contraction-relaxation cycle of skeletal muscle, defects in these proteins affect muscle relaxation and cause muscle stiffness.

Over 80 different myotonia congenita-associated chloride channel mutations have been identified, George said. His team targeted one of these for repair, a mutation that George and colleagues first identified in a Pennsylvania dog named Sparky.

Dr. Christopher Rogers, a former graduate student in George’s laboratory, engineered ribozymes to correct the "Sparky" defect and then introduced the ribozymes into cells harboring the mutant chloride channels. He demonstrated that the ribozymes could indeed repair the messenger RNA for the defective channels and that the resulting repaired proteins had normal chloride channel function. The repair was not effective in all cells, George said, but in a small percentage of cells, chloride channel function was completely restored.

"We know now that the ribozyme method can work; it’s effective at producing a protein with completely normal function," George said. "It would be nice if we knew it worked in the dog, and that’s the next step."

The investigators will continue studies in cells to improve the efficiency of the method before they test it in a group of Sparky’s descendants -- a dog model of myotonia congenita.


Other contributors to the Journal of Clinical Investigation study include Drs. Carlos G. Vanoye and Bruce A. Sullenger. The work was supported by the National Institutes of Health and the Muscular Dystrophy Association.

Leigh MacMillan | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>