Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush begins use of magnetic guided navigation system

12.12.2002


Rush is first site in the Chicago area to obtain the stereotaxis technology and one of only two in the world with an emphasis on neurosurgical applications



Neurosurgeons at Rush-Presbyterian-St. Luke’s Medical Center have become the first in the Chicago area to use a radically new, magnetically controlled system to enter the brain and its vascular system to treat a variety of diseases without surgically opening up the skull and brain.

"Magnet-guided neurosurgery allows us to use a guidewire and catheter to manipulate surgical tools within the brain in ways that previously were impossible," said Dr. Leonard Cerullo, chairman of the department of Neurosurgery at Rush and founder, president and medical director of the Chicago Institute of Neurosurgery and Neuroresearch (CINN) medical group.


"Because we can enter the brain through a blood vessel that is accessed through a small incision in the upper thigh, we have the potential to substantially reduce the need to surgically open the skull and disrupt brain tissue in order to repair aneurysms and deliver stroke therapies. We hope this will result in more effective treatment, reduced costs and swifter recovery times," he noted.

The first patient, a 48-year-old man from Chicago, was successfully treated with the technology on Tuesday, December 10. He suffered from headaches and double vision caused by malformed blood vessels in the back of his head. Swelling of the blood vessels put pressure on the brain and caused the double vision.

The system uses a magnetic field, controlled by the physician using point and click devices, to deflect the tip of a specially designed guidewire or catheter that is mechanically pushed or pulled through the body. Unlike existing guidewires and catheters, the new guidewires and catheters can be advanced through a vessel as small as one millimeter and are designed to be flexible enough to make a turn angle sharper than 90 degrees.

Initially, neurosurgeons at Rush will use the system in a clinical trial to access clogged vessels in the brains of newly diagnosed stroke patients. They also plan clinical research protocols to treat brain aneurysms and tumors.

"Our clinical research should lead to new ways to treat brain aneurysms by directing a catheter into the aneurysm, holding it in place, and then injecting a special material to obliterate it," said Dr. Demetrius Lopes, CINN’s neuroendovascular specialist who will be the principal neurosurgeon using the technology.

In the spine, the catheter’s flexibility is expected to enable neurosurgeons to navigate multiple nerve routes with one needle-stick entry point instead of the current procedure that requires one-needle stick entry point per nerve route, which is a painful and time-consuming process.

The technology is also expected to advance Rush’s research efforts in restorative neurosurgery to treat movement disorders (Parkinson’s disease, epilepsy), pain syndromes and mental illnesses. This will potentially involve using the magnetic navigation technology to accurately place tiny electrodes, stimulators or recording devices into the brain to modify the brain’s electrical signals in order to modify behavior, alter the natural history of certain diseases or to deliver therapeutic agents to specific areas of the brain. Currently, neurosurgeons must enter the brain through a hole in the skull and manually push a rigid needle in a straight-line route through any brain tissue on its way to the target area.

Interventional cardiologists at Rush will also use the system to participate in trials intended to dramatically expand the ability of cardiologists to open up vessels supplying blood to the heart. "Many blockages, due to their severity or location, currently can only be treated using drugs or cardiac bypass surgery," said cardiologist Dr. Gary Schaer, director of the Cardiac Catheterization Laboratories at Rush.

Rush recently invested more than $2 million in facilities and to acquire the Telstar interventional workstation manufactured by Stereotaxis, Inc., of St. Louis. The technology combines computer-controlled magnets, a flexible catheterization system and an X-ray fluoroscope that permits surgeons to view organs and medical devices in the body. The Food and Drug Administration has approved the system for use in clinical trials to test new ways to navigate guidewires and catheters within the heart and brain.

Rush is only the third site in the country to obtain the technology. Other centers with the magnetic navigation technology are Washington University in St. Louis and the University of Oklahoma in Oklahoma City, Okla.

Patients from all of CINNs seven offices will be able to be treated at the new Rush facility. CINN is the largest neurosurgical group practice in the Midwest. All of the 22 CINN neurosurgeons are on the faculty of Rush Medical College.

John Pontarelli | EurekAlert!

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>