Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Reveals Drug Resistance in Breast Cancer Tumors

12.12.2002


Could Spare Half of Women From Chemotherapy

Oncologists at the Duke Comprehensive Cancer Center are testing a new technique called gene expression profiling that subtypes each breast cancer tumor by its genetic defects so that doctors can tailor their treatment to inhibit that particular tumor.

The researchers believe the technique could spare millions of women from needlessly receiving toxic chemotherapy, and they are leading a national clinical trial to study gene profiling.



“Currently, we have no predictive model to determine who will respond to hormonal therapies and who won’t, so we prescribe chemotherapy as a backup measure to ensure the cancer’s demise,” said Matthew Ellis, M.D., Ph.D., director of the breast cancer program at Duke. “This one-treatment-fits-all approach leads to a huge amount of over treatment, with up to 50 percent of women unnecessarily receiving chemotherapy.”

The new technique uses a commercially available gene chip to create a genetic “fingerprint” of each tumor. Doctors use the chip to categorize each tumor by its genetic defects and predict whether the tumor will respond to standard hormonal therapies or whether it will require additional chemotherapy, said Ellis.

“The gene chip allows us to measure levels of various genes that give rise to drug resistance, so we can paint a picture of what a responding cancer cell looks like and what an unresponsive cell looks like,” said Ellis. “With such fingerprints, we can develop new drugs that target the cellular signaling pathways that have malfunctioned.”

Ellis will present his study design at the 25th annual San Antonio Breast Cancer Symposium Dec. 11-14. The multi-center study of 140 women is funded by a $3.7 million grant from the Avon Foundation and the National Cancer Institute.

Participants in the study will provide biopsies of their tumors, then receive the estrogen-depriving drug letrozole before surgery to shrink their cancers. Letrozole reduces the production of estrogen that fuels the growth of up to 80 percent of all breast cancers. Yet inexplicably, some tumors that are expected to respond to hormonal therapies remain unaffected by treatment. And, some tumors that initially respond to anti-estrogen drugs later become resistant. Doctors have long wondered what drives these paradoxical effects, but answers have been slow in coming.

To illuminate the answers, Ellis’ team will use gene expression profiling to measure subtle changes in 16,000 genes as they react, or fail to react, to Letrozole. “We are trying to identify the cellular programs that must be engaged or shut off for aromatase inhibitors to be successful,” said Ellis. Aromatase inhibitors block an enzyme called aromatase, which converts the male hormone androgen into the female hormone estrogen. Thus, women taking letrozole make almost no estrogen.

Gene expression profiling works like this: scientists use a gene chip to measure the activity of thousands of genes that drive a tumor’s reaction to treatment. A gene’s activity is measured by how many copies of messenger RNA (mRNA) it produces. They extract the mRNA from a cell, label it with fluorescent tags, and inject the mixture onto fingernail-sized gene chips. The mRNA binds to its complementary probe on the chip.

Afterward, scientists shine a special light on the chip. They can tell by the intensity of light how much messenger RNA -- and hence, copies of each gene -- is present on the chip. Thus, the researchers obtain the gene expression profile of the activity of thousands of genes. If one gene shows low activity, or another is overactive, therein lays the culprit, said Ellis.

“We used to think that hormonal therapies simply shut off cell growth, but it’s much more complicated than that,” said Ellis. “Hormonal drugs affect the entire estrogen pathway -- many more genes than we ever realized -- including those that regulate cell proliferation, cell survival, tissue invasion, metastasis and angiogenesis.” Metastasis is the spread of a cancer beyond its initial tumor, and angiogenesis is the process of blood vessel growth by which a tumor nourishes itself.

Ellis said that estrogen receptors -- small molecular docking stations in the nucleus of cells -- appear to be defective in some tumor cells. The receptors may be disconnected from tumor cell growth, or they have become super-sensitized to estrogen so that even tiny amounts can make the tumor grow. In the latter case, even an aromatase inhibitor would not completely prevent estrogen from reaching the receptor and allowing the tumor to grow.

Indeed, it is not uncommon for estrogen super-sensitive tumors to continue growing when deprived of most of their estrogen, said Ellis. Such a phenomenon is but one of the perplexing clinical questions they hope to answer.

“The value in gene expression profiling is that we can subtype each breast cancer, then tailor treatments to target that specific tumor’s defects,” said Ellis. “This would allow us to know when we should use hormonal therapies, when we should add chemotherapy, and to determine which drugs to develop to target hormonal therapy resistance.”

Other centers participating in the clinical trial include University of California San Francisco, University of North Carolina Chapel Hill and the Dana Farber Cancer Institute.

contact sources :
Dr. Matthew Ellis , (919) 668-0718
ellis053@mc.duke.edu

Rebecca Levine | EurekAlert!
Further information:
http://dukemednews.org/news/article.php?id=6180
http://cancer.duke.edu/

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>