Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D mammography system may improve breast imaging

11.12.2002


Developed at MGH, digital tomosynthesis may better identify malignant lesions



A new approach to mammography, developed by researchers at Massachusetts General Hospital (MGH), holds the potential for greatly improving the detection of breast lesions and the ability to predict whether they are benign or malignant. In a presentation earlier this month at the scientific assembly of the Radiological Society of North America (RSNA), Elizabeth Rafferty, MD, of the MGH Breast Imaging Service described initial results of a study comparing the new technique, called digital tomosynthesis, to standard mammography. Among the new technique’s advantages, she explains, is a significant reduction in false positive test results.

"The overlap of breast structures presents a major challenge for radiologists, both because these tissues can hide cancers and because they produce shadows which mimic a lesion on conventional mammography," Rafferty says. "These false positive studies account for almost 25 percent of the instances when women are recalled for additional imaging from their screening mammograms. By eliminating this structure overlap, tomosynthesis prevents virtually all of these unnecessary callbacks, along with the anxiety they create."


Tomosynthesis differs from standard mammography in the way a CT scan differs from a standard X-ray procedure. In tomosynthesis, the X-ray tube moves in a 50-degree arc around the breast while 11 low-dose images are taken during a 7-second examination. A computer then assembles the information to provide high-resolution cross-section and three-dimensional images that can be reviewed by the radiologist at a computer workstation.

"Tomosynthesis takes digital mammography to the next level," adds Daniel Kopans, MD, MGH director of breast imaging and a coauthor of Rafferty’s presentation. "It is a modification of a standard digital mammography unit. The breast is held the same way, but women will be happy to learn that the test requires only one compression of each breast rather than the two currently required by standard mammography." Kopans is one of the inventors of the digital tomosynthesis system, which has been patented by the MGH.

Rafferty’s report covers data from the first 100 women to volunteer for tomosynthesis in addition to standard mammography at MGH. Her data indicates that tomosynthesis makes lesions easier for the radiologist to see and also makes visible some lesions not detectable by conventional procedures. The radiologists who reviewed both standard mammograms and tomosynthsis images for the study reported being significantly more confident in determining the malignancy of lesions with tomosynthesis, Rafferty said.

Richard Moore, head of MGH Breast Imaging Research, says, "We can now see the tree in the forest. Digital tomosynthesis opens up multiple new avenues of investigation into better ways to detect and diagnose breast cancer early." Moore and physicist Tao Wu, PhD, helped develop the tomosynthesis device and algorithms for analyzing data and producing images.

Kopans and his team worked closely with representatives of General Electric to produce a prototype digital tomosynthesis system under a grant from the U.S. Department of Defense, and he is optimistic that ongoing clinical trials at the MGH will soon lead to FDA approval. "Tomosynthesis is going to revolutionize the way we look for breast cancers," Kopans says. "We have only begun to realize the potential of this technology."


The Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of almost $300 million and major research centers in AIDS, the neurosciences, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women’s Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>