Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D mammography system may improve breast imaging

11.12.2002


Developed at MGH, digital tomosynthesis may better identify malignant lesions



A new approach to mammography, developed by researchers at Massachusetts General Hospital (MGH), holds the potential for greatly improving the detection of breast lesions and the ability to predict whether they are benign or malignant. In a presentation earlier this month at the scientific assembly of the Radiological Society of North America (RSNA), Elizabeth Rafferty, MD, of the MGH Breast Imaging Service described initial results of a study comparing the new technique, called digital tomosynthesis, to standard mammography. Among the new technique’s advantages, she explains, is a significant reduction in false positive test results.

"The overlap of breast structures presents a major challenge for radiologists, both because these tissues can hide cancers and because they produce shadows which mimic a lesion on conventional mammography," Rafferty says. "These false positive studies account for almost 25 percent of the instances when women are recalled for additional imaging from their screening mammograms. By eliminating this structure overlap, tomosynthesis prevents virtually all of these unnecessary callbacks, along with the anxiety they create."


Tomosynthesis differs from standard mammography in the way a CT scan differs from a standard X-ray procedure. In tomosynthesis, the X-ray tube moves in a 50-degree arc around the breast while 11 low-dose images are taken during a 7-second examination. A computer then assembles the information to provide high-resolution cross-section and three-dimensional images that can be reviewed by the radiologist at a computer workstation.

"Tomosynthesis takes digital mammography to the next level," adds Daniel Kopans, MD, MGH director of breast imaging and a coauthor of Rafferty’s presentation. "It is a modification of a standard digital mammography unit. The breast is held the same way, but women will be happy to learn that the test requires only one compression of each breast rather than the two currently required by standard mammography." Kopans is one of the inventors of the digital tomosynthesis system, which has been patented by the MGH.

Rafferty’s report covers data from the first 100 women to volunteer for tomosynthesis in addition to standard mammography at MGH. Her data indicates that tomosynthesis makes lesions easier for the radiologist to see and also makes visible some lesions not detectable by conventional procedures. The radiologists who reviewed both standard mammograms and tomosynthsis images for the study reported being significantly more confident in determining the malignancy of lesions with tomosynthesis, Rafferty said.

Richard Moore, head of MGH Breast Imaging Research, says, "We can now see the tree in the forest. Digital tomosynthesis opens up multiple new avenues of investigation into better ways to detect and diagnose breast cancer early." Moore and physicist Tao Wu, PhD, helped develop the tomosynthesis device and algorithms for analyzing data and producing images.

Kopans and his team worked closely with representatives of General Electric to produce a prototype digital tomosynthesis system under a grant from the U.S. Department of Defense, and he is optimistic that ongoing clinical trials at the MGH will soon lead to FDA approval. "Tomosynthesis is going to revolutionize the way we look for breast cancers," Kopans says. "We have only begun to realize the potential of this technology."


The Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of almost $300 million and major research centers in AIDS, the neurosciences, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women’s Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>