Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New first-aid method could prevent brain damage in patients exposed to carbon monoxide

04.12.2002


A new first-aid method of treating carbon monoxide poisoning could prevent brain damage in patients by delivering more oxygen to the brain than the standard treatment, according to a study by physicians at the Toronto General Hospital, University Health Network (UHN).



The study is published in the December issue of the U.S. based and peer-reviewed journal Annals of Emergency Medicine. The researchers, led by Dr. Josh Rucker, a Toronto General Hospital research fellow and resident in the Anesthesiology training program at the University of Toronto, studied 14 subjects who were exposed to low levels of carbon monoxide (resulting in blood levels about equal to those in heavy smokers) on two occasions in order to simulate conditions during carbon monoxide poisoning.

After each exposure, which lasted one hour, the participants were given one of two "test treatments": the standard treatment of 100% oxygen, or the new method consisting of a mixture of mostly oxygen and some carbon dioxide. Each participant received both test treatments in random order. Researchers then monitored the amount of oxygen in the blood and the blood flow to the brain during exposure to carbon monoxide and during the test treatments.


KEY RESULTS

  • During the standard treatment with 100% oxygen, the flow of blood to the brain diminished, decreasing oxygen delivery to the brain. Results showed that the blood flow decreased by up to 33% and the oxygen delivered to the brain decreased by up to 20%.

  • Such a decrease in blood flow to the brain is sufficient to contribute to brain damage in a patient with severe carbon monoxide poisoning.

  • However, during treatment with the combination of oxygen and carbon dioxide, two effects were observed:

  • The delivery of oxygen to the brain was greater than during treatment with oxygen alone;

  • The rate of elimination of carbon monoxide increased by more than 20%.

"These results are intriguing," said Dr. Fisher, an anesthesiologist at Toronto General Hospital, University Health Network, Associate Professor in the Faculty of Medicine at the University of Toronto and a senior author of the study. "Most doctors believe that giving patients oxygen is like giving them chicken soup -- it can’t hurt. But, in fact, we find that treating carbon monoxide-exposed participants with pure oxygen actually limits the amount of oxygen that gets to their brains. That is worrisome."

"If severely poisoned patients respond like our test subjects, this new first-aid treatment may decrease the extent of brain damage in survivors," added Dr. Joseph Fisher.

IMPLICATIONS

  • This study raises the possibility that the standard first-aid treatment of carbon monoxide poisoning -- 100% oxygen - constricts blood vessels to the brain and decreases the total oxygen delivered to the brain.

  • Researchers think that the small amount of carbon dioxide in the oxygen counteracts the constriction of blood vessels to the brain

  • Although clinical studies need to be completed before recommending a change in the first-aid treatment of carbon monoxide poisoning, the results of this study suggest that simply maintaining carbon dioxide levels during treatment will result in more oxygen delivery to the brain, thereby decreasing the risk of permanent brain damage in severely poisoned patients.

  • Note: Adding carbon dioxide to oxygen during treatment for carbon monoxide poisoning was common in the late 1920s and 1930s.

  • It was thought then that the carbon dioxide stimulated breathing, helping to eliminate carbon monoxide more quickly, but was discontinued in the late 1940s when mechanical ventilators became available.

  • This study supports the re-introduction of this practice in order to maintain blood flow and oxygen delivery to the brain.

CARBON MONOXIDE POISONING

  • Carbon monoxide is the leading cause of fatal poisoning in the industrialized world, as well as being endemic in many parts of the developing world which use fossil fuels

  • In North America, it results in as many as 70,000 emergency room visits a year and in thousands of deaths

  • Up to 30 per cent of survivors of severe poisoning are left with disabling psychological and neurological symptoms, which sometimes last for years

  • Carbon monoxide is an odorless colorless gas formed during incomplete combustion of the fossil fuels - gas, oil, coal and wood used in boilers, engines, gas fires, water heaters, solid fuel appliances and open fires

  • When carbon monoxide is inhaled--even in tiny concentrations--it combines with the hemoglobin in the red blood cells to prevent the delivery of oxygen to the body

  • This results in few symptoms until the poisoning is advanced

  • Those suffering from carbon monoxide poisoning may initially complain of headache, nausea and fatigue but the symptoms can rapidly progress to coma and even death

  • It is therefore critical that carbon monoxide be eliminated from the body as soon and as quickly as possible

  • The only currently available emergency treatment for carbon monoxide poisoning is giving the patient 100 per cent oxygen


The study was supported, in part, by the Department of Anesthesia, University Health Network and the University of Toronto, and the Tobi and Ted Bekhor Foundation.

The Toronto General Hospital is a partner in University Health Network, along with Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at Toronto General Hospital has made it a national and international source for discovery, education and patient care. It has one of the largest hospital-based research programs in Canada, with major research projects in cardiology, transplantation, surgical innovation, infectious diseases, and genomic medicine. Toronto General Hospital is a teaching hospital affiliated with the University of Toronto.

To schedule an interview with Dr. Josh Rucker or Dr. Joseph Fisher, please contact:

Alex Radkewycz
Public Affairs
Toronto General Hospital, University Health Network
Phone: 416-340-3895
Pager: 416-980-0752

Marlene de Chellis | EurekAlert!

More articles from Health and Medicine:

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>