Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Leukemia-Related Protein is a Master Editor of the "Histone Code"

28.11.2002


Rearrangements of the mixed lineage leukemia gene, MLL, are associated with aggressive leukemias in both children and adults. Researchers at the University of Pennsylvania School of Medicine have found that one portion of the MLL protein is an enzyme that "edits" the so-called histone code, a series of modifications to proteins associated with DNA that influence how and when certain genes are turned on and off. Their findings are presented in the November issue of Molecular Cell.



When functioning properly, the MLL protein regulates the expression of Hox genes, which play a role in cell growth and development. In some leukemias MLL is rearranged so that the cells are unable to turn off Hox genes. The Penn investigators found that a portion of the MLL protein binds directly to the Hox genes and edits the histone code at these sites. A rearranged form of MLL that causes leukemia also upregulated Hox expression but with a different "code". Presumably the differences in the pattern of histone modifications accounts for their deregulated expression in leukemia.

The histone code hypothesis was first outlined by Dr. C. David Allis and colleagues, of the University of Virginia Health System, a co-author on this paper. The theory, which rapidly is gaining acceptance, postulates that expression of certain regions of DNA is turned on and off by modifying portions of histone proteins or DNA. Modified histones and DNA attract the cell’s gene-reading machinery via specific interactions with these elements of the histone code.


According to Jay L. Hess MD, PhD, of Penn’s Department of Pathology and Laboratory Medicine and senior author of the study, these results underscore the importance of the histone code in developmental biology and disease. "Domains similar to those with histone modifying activity in MLL are found in other proteins implicated in human tumors including acute leukemia, lymphoma, and prostate cancer and probably have a similar function. What is encouraging is that proteins with enzymatic activity are good targets for drug development. These are definitely exciting times for cancer biologists."

This study was supported by grants from the Leukemia and Lymphoma Society, the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, and the Genetics Institute of the Canadian Institute for Health Research.

Co-authors of this study include Tom Milne, Denise Gibbs, and Mary Ellen Martin, of Penn, Scott D. Briggs and C. David Allis of the University of Virginia Health System, and Hugh Brock of the University of British Columbia.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>