Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature implantable sensor likely lifesaver for patients

25.11.2002


Using a tiny wireless sensor developed at Oak Ridge National Laboratory, doctors will know in minutes instead of hours if an organ is getting adequate blood flow after transplant or reconstructive surgery.



Conventional methods for assessing circulation involve invasive procedures or extensive laboratory testing. In some cases, by the time doctors realize there isn’t adequate blood flow to an organ or tissue, irreversible damage already has occurred.

"Our goal is to offer a technique that provides the physician with a very early indication of whether the surgery is successful," said Nance Ericson, who leads the effort from ORNL’s Engineering Science and Technology Division. Ericson is working with Mark Wilson, a surgeon at the University of Pittsburgh, and Gerard Coté of Texas A&M University.


The tiny implantable sensor – about the diameter of a quarter -- and micro-instrumentation being developed by Ericson would provide real-time information by transmitting data to a nearby receiver. Specifically, the unit employs optical sensors to assess tissue circulation. Preliminary tests using laboratory rats have provided encouraging results.

"Although we have more work to do, we are extremely optimistic that this technology will dramatically improve the ability of physicians to care for critically ill patients," Wilson said.

While Wilson provides the practicing medical component required in this research, Coté, who heads the optical biosensing laboratory within the Department of Biomedical Engineering at Texas A&M, provides expertise in modeling, post-processing and sensor optimization. Ericson and ORNL colleagues bring to the team vast knowledge in engineering, signal processing, system design, radio frequency telemetry design, and fabrication and micro-fabrication techniques.

Over the next year, Ericson will be working to miniaturize the sensors and associated electronics, which will enable surgeons to implant the sensor in the precise area of interest, either as a subdermal or deep-tissue implant. Ericson envisions the sensor remaining in the body, which would avoid additional surgery; however, that is an area that may require additional evaluation. Other efforts include biosensor optimization, design of low-power highly miniaturized signal processing and telemetry electronics, and development of encapsulation techniques.

Once they have made sufficient progress in these areas, the research team plans to conduct additional testing of the sensing techniques to demonstrate clinical significance. Finally, the procedure would be subject to clinical trials and Food and Drug Administration approval.

Assuming the technology passes all the tests, Ericson envisions this work leading to significant benefits.

"This research is based on several key developments in optics and micro-fabrication that have far-reaching implications for future directions in a multitude of clinically significant biomedical sensing systems," Ericson said. "Through these innovations, biomedical microsensors are poised to make major technology advances to help meet the critical needs of patients in hospitals, emergency care facilities and extended-care facilities."

The ability to prevent -- or at least detect -- circulation problems quickly could lead not only to fewer complications during surgery, but also could reduce the number of deaths attributable to those complications.

Although not a part of this project, Ericson sees this leading to several other photonics-based microsensors for making measurements in a number of areas. For example, this approach could be useful for measuring arterial blood gases, which are primary indicators of respiratory function, or serum lactate, which is a marker for the severity of tissue injury. Current methods require obtaining blood samples and then sending those samples to a lab for analysis.


Funding for this research is provided by DOE’s Office of Science. Initial funding began in 1997 through ORNL’s Laboratory Directed Research and Development program, also funded by DOE.

ORNL is a DOE multiprogram research facility managed by UT-Battelle.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov/news

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>