Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford trial studies vastly shorter radiation time for breast cancer treatment

21.11.2002


A new radiation approach being tested at Stanford University Medical Center could shorten the overall treatment time for women with breast cancer. Participants will receive a single dose of radiation at the time of surgery rather than the usual six-week course of radiation therapy. The clinical trial is now recruiting patients.



"The trial should tell us whether this accelerated form of radiotherapy is safe, feasible and effective in controlling cancer recurrence in the breast for certain women who have a lumpectomy," said Frederick Dirbas, MD, assistant professor of surgical oncology at the Stanford School of Medicine and leader of the trial.

Women with a breast tumor often have a lumpectomy, surgery in which the doctor removes only the cancerous region, leaving the rest of the breast intact. The patient then receives a dose of radiation to the entire breast each weekday for about the next six weeks to minimize the risk of cancer returning.


"The fact that current radiation treatments occur every day for several weeks makes it an issue for women," Dirbas said, adding that the schedule can be inconvenient for women who work, care for young children or live far from the treatment site. He said the idea behind this prolonged schedule was that women would experience fewer side effects if the total radiation dose was broken into smaller increments.

In recent years, however, doctors in the United States and Europe have begun looking at approaches to shorten the overall treatment time while still fending off cancer. In one Italian trial with more than 100 participants, patients received a single large dose of radiation at the same time as the surgery. Two years after the initial surgery, the treatment appears to be safe and effective.

Based on this success, Dirbas and Donald Goffinet, MD, professor of radiation oncology, are replicating the Italian trial - the first U.S. trial of this technique. They hope to recruit 50 women who are older than 40, have a single breast tumor that is smaller than 2.5 centimeters and have a low likelihood of tumors elsewhere in the breast.

For information about participating in the trial, please call Janelle Maxwell at 650-498-7740.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Neale Mulligan | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>