Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-invasive imaging technique detects plaques beginning to form in vessels

20.11.2002


A new imaging method successfully identifies miniscule, young blood vessels that form during the development of plaques, according to a study in rabbits led by Washington University School of Medicine in St. Louis. These plaques are akin to atherosclerosis in humans, the primary cause of heart attack and stroke.



"We’ve developed a way to take non-invasive images of very early plaques, before they’re detectable by any other means," says Samuel A. Wickline, M.D., professor of medicine and biomedical engineering and one of the study’s senior authors. "This same technology, we think, will allow us to detect very early cancers and other inflammatory events as well."

Patrick M. Winter, Ph.D., research instructor of medicine and first author of the study, presented the team’s results Nov. 19 during the Russell Ross Memorial Lecture and New Frontiers in Atherosclerosis at the American Heart Association’s Scientific Sessions 2002 in Chicago. Gregory M. Lanza, M.D., Ph.D., assistant professor of medicine and biomedical engineering, is co-senior author.


Wickline also presented an overview of molecular imaging and nanotechnology at the Molecular Basis for Cardiac Imaging session.

Atherosclerosis – the progressive hardening of arteries – results from the accumulation of plaques in key blood vessels. In order for plaques to form, a crowd of smaller vessels, called capillaries, must develop around the diseased site.

In this study, the team used a relatively new imaging method – developed primarily at Washington University – to label growing capillaries, thereby identifying locations where plaques are about to form. They loaded an extremely small particle roughly 200 nanometers long, called a nanoparticle, with about 80,000 atoms of gadolinium, which shows up as a bright spot on a magnetic resonance image (MRI). Other carriers for gadolinium hold only a few such atoms at a time, and therefore result in less bright images.

In order to ensure that gadolinium highlighted only new capillaries, the team also packed the nanoparticle with molecules that specifically detect a protein called avb3, which is abundant in rapidly growing capillaries. In so doing, the nanoparticles mainly latched onto cells that contain avb3.

"You can load these nanoparticles with whatever you want, like a Mr. Potato Head," Wickline explains. "The targeting agent allows us to select where the particle goes, and then we can either add an imaging agent, like gadolinium, or a drug, like plaque stabilizing medications or anticancer agents."

The team injected nanoparticles loaded with avb3 detectors and gadolinium into 13 rabbits. Four of the rabbits had been fed normal diets and nine had been fed high-cholesterol diets for about 80 days. They then took MRI scans of the abdominal aorta – the largest artery in the body – for two hours after injection. The cholesterol-fed rabbits injected with targeted nanoparticles had gadolinium signals in the abdominal aorta more than twice as bright as the other rabbits.

Post-mortem examination confirmed that the cholesterol-fed animals were in fact developing dangerous capillaries around the aorta, in contrast to the control diet rabbits.

"These preliminary results suggest that we can manipulate nanoparticles to image plaques as they are just beginning to form," says Wickline. "Previous research of ours also suggests that this technique can distinguish between patients with stable plaques from those whose plaques are about to rupture and thereby cause a heart attack or stroke."

Because tumors also require new populations of capillaries, the team believes this technique will enable them to detect very early cancers at the beginning stages of tumor development.


The technology used in this study has been licensed to KEREOS Inc., which is devoted to molecular imaging and targeted therapeutics. Gregory M. Lanza, M.D., Ph.D., and Samuel A. Wickline, M.D., are co-founders of KEREOS and both are board members and equity holders.

Winter PM, Caruthers SD, Schmeider A, Harris TD, Chinen L, Williams T, Watkins MP, Allen JS, Wickline SA, Lanza GM. Molecular imaging of angiogenesis in atherosclerotic rabbits by MRI at 1.5T with avb3 targeted nanoparticles, American Heart Association, Nov. 19, 2002.

Wickline SA, Lanza GM. Nanotechnology for molecular imaging and targeted therapeutics. American Heart Association, Nov. 17, 2002.

Funding from the National Heart, Lung and Blood Institute, the National Cancer Institute and Philips Medical Systems supported this research. Bristol-Myers Squibb Medical Imaging provided materials for the study.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht New way to target advanced breast cancers
24.09.2018 | Jackson Laboratory

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>