Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting bone metastasis and hypercalcemia

19.11.2002


Most cancer patients are not killed by their primary tumors but succumb to metastatic disease. The most common human cancers--lung, breast, and prostate--frequently spread to bone, causing suffering and morbidity through pain, fractures, and nerve compression syndromes.



Tumor cells enter bones through blood and lymphatic vessels. In order to establish bone metastases, they have to influence bone metabolism. Most breast cancers that spread to bone express high levels of parathyroid hormone related protein, or PTHrP, a molecule that promotes bone breakdown. Scientists believe that the bone breakdown caused by PTHrP starts a vicious cycle: cross-talk between the tumor cells and the osteoclasts, cells that specialize in breaking down bone, ultimately leads to more and more bone loss and more and more aggressive growth of the tumor.

Consistent with this scenario, inhibition of osteoclast activity not only decreases bone lesions but also reduces tumor burden in animals. Preliminary results from human patients treated with bisphosphonates, a group of drugs also used to prevent and treat osteoporosis, suggest that the same might be true in humans.


An article in the November 18 issue of the Journal of Clinical Investigation focuses on direct inhibition of PTHrP, the molecule that is believed to play a critical role in starting the vicious cycle in most breast cancers that metastasize to bone.

Wolfgang Gallwitz and colleagues (of Osteoscreen Ltd in San Antonio, Texas) identified two compounds that inhibit PTHrP production in human breast cancer cells. In animal models, the compounds did reduce metastatic bone breakdown, and compared favorably with bisphoshonates. The mode of action of the two classes of drugs is different--the new compounds inhibit PTHrP production and secretion by the tumor cells whereas bisphosphonates inhibit osteoclasts--which suggests that the two drugs might have synergistic effects when used in combination.

In an accompanying Commentary, T. John Martin, of St. Vincent’s Institute of Medical Research in Melbourne, Australia, discusses the findings in the context of our understanding of bone metabolism and comments on potential therapeutic benefits and risks of PTHrP inhibitors in cancer.

PTHrP secretion by tumor cells frequently causes another complication in cancer patients, namely elevated calcium levels. The excess calcium comes on the one hand from increased breakdown of bone, and on the other from increased retention of calcium by the kidney. Hypercalcemia occurs in an estimated 10-20% of cancer patients and is the most common life-threatening metabolic abnormality associated with neoplastic disease. Mouse studies performed by Gallwitz and colleagues suggest that their PTHrP inhibitors have potential in the treatment of hypercalcemia as well.


CONTACT:
Wolfgang E. Gallwitz
OsteoScreen, Inc.
Suite 201
2040 Babcock Road
San Antonio, TX 78229
USA
Phone 1: 210-614-0770
Fax 1: 210-614-0797
E-mail: gallwitz@osteoscreen.com


ACCOMPANYING COMMENTARY:
Manipulating the environment of cancer cells in bone: a novel therapeutic approach

CONTACT:
T. John Martin
St. Vincent’s Institute of Medical Research
9 Princes Street
Fitzroy, Melbourne, Victoria 3065
AUSTRALIA
PHONE: 61-3-9288-2480
FAX: 61-3-9416-2676

E-mail: j.martin@medicine.unimelb.edu.au




Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17124.pdf
http://www.the-jci.org/press/11936.pdf

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>