Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting bone metastasis and hypercalcemia

19.11.2002


Most cancer patients are not killed by their primary tumors but succumb to metastatic disease. The most common human cancers--lung, breast, and prostate--frequently spread to bone, causing suffering and morbidity through pain, fractures, and nerve compression syndromes.



Tumor cells enter bones through blood and lymphatic vessels. In order to establish bone metastases, they have to influence bone metabolism. Most breast cancers that spread to bone express high levels of parathyroid hormone related protein, or PTHrP, a molecule that promotes bone breakdown. Scientists believe that the bone breakdown caused by PTHrP starts a vicious cycle: cross-talk between the tumor cells and the osteoclasts, cells that specialize in breaking down bone, ultimately leads to more and more bone loss and more and more aggressive growth of the tumor.

Consistent with this scenario, inhibition of osteoclast activity not only decreases bone lesions but also reduces tumor burden in animals. Preliminary results from human patients treated with bisphosphonates, a group of drugs also used to prevent and treat osteoporosis, suggest that the same might be true in humans.


An article in the November 18 issue of the Journal of Clinical Investigation focuses on direct inhibition of PTHrP, the molecule that is believed to play a critical role in starting the vicious cycle in most breast cancers that metastasize to bone.

Wolfgang Gallwitz and colleagues (of Osteoscreen Ltd in San Antonio, Texas) identified two compounds that inhibit PTHrP production in human breast cancer cells. In animal models, the compounds did reduce metastatic bone breakdown, and compared favorably with bisphoshonates. The mode of action of the two classes of drugs is different--the new compounds inhibit PTHrP production and secretion by the tumor cells whereas bisphosphonates inhibit osteoclasts--which suggests that the two drugs might have synergistic effects when used in combination.

In an accompanying Commentary, T. John Martin, of St. Vincent’s Institute of Medical Research in Melbourne, Australia, discusses the findings in the context of our understanding of bone metabolism and comments on potential therapeutic benefits and risks of PTHrP inhibitors in cancer.

PTHrP secretion by tumor cells frequently causes another complication in cancer patients, namely elevated calcium levels. The excess calcium comes on the one hand from increased breakdown of bone, and on the other from increased retention of calcium by the kidney. Hypercalcemia occurs in an estimated 10-20% of cancer patients and is the most common life-threatening metabolic abnormality associated with neoplastic disease. Mouse studies performed by Gallwitz and colleagues suggest that their PTHrP inhibitors have potential in the treatment of hypercalcemia as well.


CONTACT:
Wolfgang E. Gallwitz
OsteoScreen, Inc.
Suite 201
2040 Babcock Road
San Antonio, TX 78229
USA
Phone 1: 210-614-0770
Fax 1: 210-614-0797
E-mail: gallwitz@osteoscreen.com


ACCOMPANYING COMMENTARY:
Manipulating the environment of cancer cells in bone: a novel therapeutic approach

CONTACT:
T. John Martin
St. Vincent’s Institute of Medical Research
9 Princes Street
Fitzroy, Melbourne, Victoria 3065
AUSTRALIA
PHONE: 61-3-9288-2480
FAX: 61-3-9416-2676

E-mail: j.martin@medicine.unimelb.edu.au




Brooke Grindlinger, PhD | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/17124.pdf
http://www.the-jci.org/press/11936.pdf

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>