The growing Staphylococcus aureus arsenal

Staphylococcus aureus is an opportunistic pathogen with a diverse battery of virulence factors, each of which can act alone or in concert in the development of persistent and sometimes lethal infections such as sepsis, toxic shock syndrome, food poisoning and severe skin diseases.

Staphylococcal infections begin when the organism gains access to host tissues or the adjoining blood supply through breaches in the skin. More than 20% of healthy humans are natural carriers of S. aureus, 10%-20% of these carriers harbor multidrug-resistant strains, and the frequencies of both community-acquired and hospital-acquired staphylococcal infections continue to increase. Disturbingly, our stockpile of antibiotics is not evolving at a rate capable of quelling the uprising of resistance.

Determining whether an infection is contained or succeeds in spreading is a complex battle between defensive cells of the patient’s immune system and the onslaught of the array of enzymes, toxins and other injurious factors released by the bacterium. During early stages of infection the S. aureus expresses proteins that enable its binding to, and colonization of, host tissue. Following establishment within the host, other toxins and enzymes help the staphylococci spread to nearby tissue and begin the process of colonization over and over again.

In the November 18 issue of the Journal of Clinical Investigation Eric Brown and colleagues from the Texas A&M University Health Science Center further investigate the role of another interesting member of the S. aureus artillery. The MHC class II Analog Protein (known as Map) was shown to interfere with the function of T cells, a patient’s most specific defense against foreign intruders, which appeared to promote the persistence and survival of S. aureus in infected mice.

CONTACT:
Eric Brown
Texas A&M University System Health Science Center
Albert B. Alkek Institute of Biosciences and Technology
2121 W. Holcombe Blvd.
Suite 603
Houston, TX 77030-7552
USA
Phone 1: 713-677-7572
Fax 1: 713-677-7576
E-mail: ebrown@ibt.tamu.edu

Media Contact

Brooke Grindlinger, PhD EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors