Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic option for thwarting cancer

18.11.2002


From ultraviolet radiation to food carcinogens, our bodies are bombarded with stuff that can make a normal cell go haywire, multiplying out of control and turning cancerous. Thanks to a set of tumor suppressor genes, however, we can defend against this daily onslaught.



Goaded into action, these genes push cells into a kind of molecular menopause, called senescence. The cells remain healthy, but they stop reproducing.

Researchers often assume that we need our tumor suppressor genes to remain disease-free; otherwise we fall prey to cancer. Indeed, in roughly half of all human tumors, the suppressor gene called p53 is defective.


Now, however, in a study reported in today’s issue of Genes and Development, University of Illinois at Chicago investigators have shown that we don’t need these genes to stop the development of cancer. Another gene can take their place.

"We found that if you knock out a single gene called Cdk4, you can still make cells cancer resistant, even if their tumor suppressor defense mechanism is deficient," said Dr. Hiroaki Kiyokawa, assistant professor of molecular genetics and a member of the UIC Cancer Center. "Cells still go into senescence."

The finding opens up a new option for cancer therapy: targeting the Cdk4 gene or the enzyme it produces.

"This is an outstanding target, particularly since so many cancer cell types and precancerous tissues have faulty tumor suppressor genes," Kiyokawa said.

According to Kiyokawa, the Cdk4 gene normally accelerates cell division through the enzyme it manufactures. He became curious about the role of Cdk4 in cancer when the scientific literature pointed to its elevated enzyme activity in melanomas, gliablastomas, breast and ovarian tumors and other cancers.

In an earlier trial, Kiyokawa and his colleagues attempted to induce skin papillomas, or tumors, in mice bred in their laboratory without the Cdk4 gene. They painted the animals’ skin with a widely used carcinogen, but virtually no tumors developed.

In the present study, the researchers set out to understand how Cdk4 inhibits tumor growth. They deleted the Cdk4 gene in mouse fibroblast cells, derived from connective tissue, and made the cells cancer prone by inactivating two tumor suppressor genes, p53 and Ink4a/Arf. The cells became senescent even when p53 or Ink4a/Arf was absent, yielding proof that Cdk4 is required for a cell to become cancerous.

Importantly, the mice that lack the Cdk4 gene appeared healthy, although they were smaller than average and sometimes developed diabetes, Kiyokawa said. That is, even without the Cdk4 gene, they developed no severe abnormalities -- an indication that future cancer therapy could target the Cdk4 gene without significantly disrupting normal cell function.

"Losing Cdk4 does not appear to be critical for the body’s normal growth pattern. Such an important function as cell division is bound to be regulated by multiple redundant pathways that can take over when Cdk4 is gone," Kiyokawa said.

In fact, Kiyokawa doesn’t think that Cdk4 is even necessary for regular cell growth.

"Normal cell division is like cruising along the highway at the legal speed limit," Kiyokawa said. "Cancerous cell division is like flooring the accelerator. The car can quickly get out of control. Driving at 55 miles an hour doesn’t require Cdk4. You need Cdk4 only if you are speeding."

Kiyokawa believes that Cdk4 mobilizes when cells hit their "mileage limit" -- the end of their proliferative life span. After completing a preprogrammed number of divisions, cells normally stop multiplying.

To stop, they need tumor suppressor genes -- or at least that’s what researchers to date have assumed. Otherwise, they keep growing, under the influence of Cdk4.

"In cancer, cells exceed their mileage limit. For that, Cdk4 is necessary," Kiyokawa said. "By eliminating Cdk4, we can force cells to stop dividing, inducing senescence, which is exactly what tumor suppressor genes normally do."

Future studies in Kiyokawa’s laboratory will focus on developing strategies to sabotage the Cdk4 gene and its growth-accelerating enzyme in cancer-prone patients.

Other researchers involved in the present study were Xianghong Zou, Dipankar Ray, Aileen Aziyu, and Konstantin Christov of UIC and Alexander Boiko and Andrei Gudkov of the Lerner Research Institute at the Cleveland Clinic Foundation.


The study was supported by the American Cancer Society

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/com/cancer.
http://www.uic.edu/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>