Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered blood vessels prove durable and clot resistant

18.11.2002


American Heart Association meeting report



Researchers have built mechanically sound blood vessels out of tissue from human skin cells, according to a study reported today at the American Heart Association’s Scientific Sessions 2002. The technique involves tissue engineering, an emerging science that takes cells from the body, manipulates them in the laboratory to create functional tissue, and puts the new tissue back into the patient.

The goal is to produce healthy, functioning blood vessels built exclusively from a person’s own cells, so the body’s immune system won’t reject the new tissue. Such vessels would be important in heart and leg bypass operations and for vessels called arteriovenous shunts used for dialysis patients.


The scientists reported that tissue-engineered blood vessels didn’t burst or develop blood clots in laboratory tests and short-term animal experiments.

"The study’s most important findings were: First, the technology works from a commercial perspective, meaning we can build mechanically sound vessels for a wide array of patients using the exact same protocol," says Todd McAllister, Ph.D., president and chief executive officer of Cytograft Tissue Engineering in Novato, Calif., which developed the vessel-building technique.

"Second, we demonstrated that thrombogenesis (the formation of blood clots) does not appear to be a problem in the short term – up to 14 days. Short-term blood clots are the biggest challenge facing most synthetic materials, whether they are used for blood vessels, new heart valves, or other vascular prostheses. We expect to begin this research in humans within 18 months."

In the study reported today, researchers took fibroblast cells from 11 patients (ages 54 to 84) with advanced cardiovascular disease who had coronary artery bypass operations at Stanford University. Fibroblasts form the outer wall of blood vessels. The researchers used endothelial cells from animals to make the inner lining of the vessels.

Typically, tissue engineering involves growing cells on a synthetic scaffold to create a specific shape, such as a piece of bone for use in facial reconstruction surgery. These scaffolds have traditionally been necessary to provide mechanical strength to the new tissue.

However, Cytograft’s chief scientific officer Nicolas L’Heureux, Ph.D., has developed a different approach called sheet-based tissue engineering.

"We can build a tissue that is only a few hundred microns thick, the diameter of several human hairs, that is robust enough that we don’t need synthetic materials or scaffolding to support it," L’Heureux says. The cell sheets are removed from the dish and wrapped around a temporary stainless steel cylinder 4 millimeters (0.15 inch) in diameter. The vessel then goes through a maturation phase where the separate layers fuse into a homogeneous tissue.

After removing the tissue from the steel cylinder, endothelial cells are seeded to the inside to create the inner lining of the blood vessel. Finally, the vessels are exposed to increasing rates of fluid flow and pressure to precondition them for implantation.

The engineered vessels were implanted as a femoral (leg) artery graft in study animals. The vessels were then removed at three, seven and 14 days after implantation. All but two of the vessels survived past day three and seemed mechanically stable without forming blood clots.

One question they had going into this study is whether the same chemicals and techniques that could successfully engineer tissue cells from one human into a new blood vessel would also work on cells from other humans.

"It was quite conceivable that differences from patient to patient would be so significant that the same recipe for making blood vessels could not be used in all cases," McAllister says. "We had no idea whether we could do this across a wide range of age- and risk-matched patients."

With early evidence showing the vessels’ reliability and clot resistance, researchers plan to implant tissue-engineered blood vessels in humans in 12 to 18 months, he says. The first patients will be those with peripheral vascular disease, the severe blockage of a leg artery that can lead to amputation.


Co-authors are Mark Koransky, M.D.; Nathalie Dusserre, Ph.D.; Gerhardt Konig, B.S.; and Robert Robbins, M.D. Abstract 1864

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>