Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUHSC research shows drug blocks enzyme that activates bacterial and viral toxins

18.11.2002


A paper published in the December, 2002 issue of Infection and Immunity by a research team at the Louisiana State University (LSU) Health Sciences Center in New Orleans provides clear evidence that the lethal toxins of such infectious bacteria as Pseudomonas and anthrax can be blocked by a drug developed at the LSU Health Sciences Center in New Orleans. The compound, called D6R (hexa-D-arginine), is a potent, stable, small molecule inhibitor of furin.



Bacteria produce a number of toxins which rapidly enter and kill cells. In anthrax, the lethal factor toxin must bind to another part of the anthrax toxin, called the PA molecule, before it can enter and destroy a cell. But before binding can occur, the PA molecule produced by the bacteria must be made smaller. Furin, a protein-cutting enzyme or protease, which sits on the outside of cells, cuts the PA molecule, making it small enough for the lethal factor toxin to attach. Lethal factor toxin cannot bind to PA that has not already been cut by furin; therefore, without cut PA, lethal factor toxin loses the ability to bind to and enter the cell, and becomes harmless.

Working on the theory that if the action of furin could be blocked, the toxins would not be activated and therefore unable to kill cells, the research team set out to make a peptide that would suppress furin activity. In collaboration with a research group in California (Torrey Pines Institute for Molecular Studies), the LSUHSC group developed the furin inhibitor, D6R, for which a patent application has now been filed. The LSUHSC research group under the direction of Dr. Iris Lindberg, Professor of Biochemistry, included current postdoctoral fellow Dr. Miroslav S. Sarac, and past fellow Dr. Angus Cameron.


In the current paper, the LSUHSC research scientists examined the therapeutic potential of D6R against Pseudomonas aeruginosa exotoxin, both in cell culture and in live animals (mice). Various concentrations of D6R were tested, with no apparent side effects, regardless of dose. (However, no tissue microhistology has yet been done, and these studies are needed to reveal any subtle damaging effects.) The survival rate of cells in culture 48 hours after treatment with D6R–given at the same time as Pseudomonas toxin-- was significant–50%. The survival rate of the group of mice treated with D6R for two days prior to administration of toxin was also about 50% at seven days. The group of mice treated with D6R at the same time toxin was administered showed a 25% survival rate.

Pseudomonas aeruginosa is an opportunistic pathogen causing urinary tract infections, respiratory system infections, dermatitis, soft tissue infections, bacteremia and a variety of systemic infections, especially in those with immunosuppression related to cancer, HIV and severe burns. P. aeruginosa is known for its resistance to antibiotics. Although some antibiotics are effective against some strains, even those antibiotics are not effective against all strains.

Sepsis, a systemic infection, is the leading cause of death among critically ill patients in the US. It is estimated that about 750,000 American people develop sepsis each year and that more than 200,000 die from it. One of the factors contributing to the high mortality of sepsis (which has increased more than 90% in the last 20 years according to the National Vital Statistics Report, 2000,) is damage from excessive production of cytokines (chemical messengers of the immune system). The LSUHSC scientists found that D6R was not only able to protect cells from lethal toxins, but to do so without invoking a cytokine response itself. D6R also dramatically lowered the production of one cytokine, TNF.

According to the researchers, D6R appears to exhibit a number of potentially promising attributes. It is able to cross cell membranes; it is small enough to achieve useful therapeutic concentrations; and it exhibits no apparent toxicity at concentrations 100x therapeutic levels. It could also prove useful in treating infection from other viruses and bacteria whose toxins are dependent upon furin activity for activation. Besides Pseudomonas and anthrax, these include Ebola, clostridium, diphtheria, shiga, RSV, HIV-1, infectious bronchitis and yellow fever among others.

Dr. Lindberg was recently awarded a grant by the National Institute of Allergy and Infectious Diseases to test D6R against anthrax toxin in both cells as well as animal models (rats and mice). She will further examine the structural requirements of D6R-related molecules against furin with the idea of eventually using D6R (or a better drug developed through these studies) as a therapeutic drug for anthrax, Pseudomonas and other furin-dependent infections. She will also conduct safety and toxicity studies during the grant period.

"This is very exciting research," said Dr. Lindberg. "We hope that D6R-like furin inhibitors will represent effective and potent new drugs that will not only prove a viable approach to combat some types of bacterial infection, but also add to our country’s bioweapons defense arsenal."

Leslie Capo | EurekAlert!
Further information:
http://www.lsumc.edu/

More articles from Health and Medicine:

nachricht Scientists discover the basics of how pressure-sensing Piezo proteins work
22.08.2019 | Weill Cornell Medicine

nachricht Protein-transport discovery may help define new strategies for treating eye disease
22.08.2019 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>