Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Bioengineers Develop First Computer Model that Predicts Disease Variant Based on Genetic Defect

14.11.2002


Bioengineers have for the first time used a computer model to relate specific genetic mutations to exact variations of a disease. This is the first model-based system for predicting phenotype (function of the cell or organism) based on genotype (an individual’s DNA).


Bernhard Palsson, Professor, Bioengineering



In the study, published in Genome Research (Vol. 12, Issue 11, 1687-1692, November 2002, article link), Bernhard Palsson and his team at UCSD’s Jacobs School of Engineering reviewed genetic information from patients who have an enzyme deficiency that causes hemolytic anemia. Physicians have recorded some 150 DNA sequence variations that could be involved in this type of anemia. By inserting the specific DNA sequences into a computer model for red blood cell metabolism, Palsson accurately predicted which mutations would result in chronic hemolytic anemia and which would cause a less severe version of the disease.

“Eventually, there could be a kind of databank of specific genetic mutations that cause precise disease variants,” says Palsson. “Some mutations will be severe, others benign. And every variation of a disease could be treated differently. This could be incredibly useful for drug development and will aid physicians in creating effective treatment plans for individuals.” A person’s risk of getting a disease is often influenced by a permutation in a single base pair in their genome, called a single nucleotide polymorphism (SNP). And for any one type of cancer such as breast cancer, there may be as much as a dozen variations of the disease. Now that the human genome has been mapped, biotechnology companies and scientists are feverishly developing processes to uncover SNPs that are related to variations of diseases such as cancer, heart disease and a host of inherited disorders.


Until now, most approaches have relied on statistical correlations between reported mutations and occurrences of disease variants.

Palsson’s technique actually defines the mechanism by which a genetic defect causes a disease. He was able to make this mathematical calculation by building a computer model that is based on the well-known metabolism in the human red blood cell.

“The model is like the wiring diagram or design drawings for the cell,” says Palsson. “It incorporates all the genes in the cell, the products of each, and the interwoven process of how those products interact to produce cellular functions. Once we have this computer (now called in silico) model, it is in principle a fairly straightforward process to alter a specific DNA sequence, run a simulation on the program, and receive information back about how the defect impacts the cell’s function.”

Palsson notes that his model is based on 30 years of chemistry and biology research about metabolism in the red blood cell, which is one of the human body’s simplest and most well-understood cell types.

“Building in silico models is a complex process requiring hard-to-find expertise, and it will take a few years before these kinds of models will become common place for diagnosis, management of disease, and development of therapeutics,” says Palsson. “It has become a widely held expectation by an increasing number of scientists that in silico models of human disease processes will significantly impact future delivery of health care. Our research is significant in that we are demonstrating the proof of concept for the first time.”

UCSD has formed a spin-off company, called Genomatica, to bring Palsson’s in silico modeling technologies into commercial use.

Denine Hagen | EurekAlert!
Further information:
http://www.genome.org/cgi/content/full/12/11/1687
http://gcrg.ucsd.edu/personnel/palsson.htm
http://www.genomatica.com/index1.html

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>