Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell clones shrink melanoma tumors

13.11.2002


Paper published in the Proceeding of the National Academy of Sciences



Below is an advisory distributed today by the Proceedings of the National Academy of Sciences (PNAS). The paper can be found in the online early edition of PNAS at www.pnas.org.

The study, conducted by Dr. Cassian Yee, a researcher at the Fred Hutchinson Cancer Research Center, involved 10 people diagnosed with advanced melanoma. For each patient immune system cells able to identify and target melanoma were extracted and cloned. The cloned cells were expanded in the lab and re-injected into the patient. The results of the study showed that in five patients tumors stopped growing for up to one year and in three of the patients the tumors appeared to shrink.


"While we did not expect to cure the cancers, the technique appears to benefit patients by curbing the spread of their tumors, says Dr. Yee."

Soldier Clones: T Cells Target Tumors

A preliminary clinical trial suggests that armies of T cells generated in the lab can be injected into patients to halt the spread of cancerous tumors. One strategy for treating cancer is to sensitize the immune system to the presence of tumors so it can attack the cancerous cells. Vaccinating patients with proteins present on the cancerous cells could kick the immune system into action. Instead of relying on the immune system to manufacture a defense, however, Cassian Yee and colleagues tried supplying ready-made soldiers. In the lab, the authors grew T cells, those cells that destroy invaders or aberrant cells. To insure that the T cells found their target, the authors trained them on their quarry, stimulating the cells with a protein found on metastatic melanoma cells. The authors then injected these designer T cells into 10 patients over the course of 12 weeks. The results, reported in article #6000, indicate that the T cells clones were able to home in on the tumors, which regressed slightly or stabilized in 8 of the 10 patients, for an average period of 11 months. In addition to T cells, the injections contained IL-2, a chemical that stimulates the T cells to replicate, resupplying the troops. Although IL-2 can be toxic in high doses, the patients showed little reaction to the low dose of IL-2 used.


"Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastic melanoma: in vivo persistence, migration and anti-tumor effect of transferred T cells" by C. Yee, J.A. Thompson, D. Byrd, S.R. Riddell, P. Roche, E. Celis, P.D. Greenberg.

Susan Edmonds | EurekAlert!
Further information:
http://www.fhcrc.org/
http://www.pnas.org/

More articles from Health and Medicine:

nachricht UTMB researchers have discovered a new antiviral mechanism for dengue therapeutics
14.07.2020 | University of Texas Medical Branch at Galveston

nachricht Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents
08.07.2020 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

When Concrete learns to pre-stress itself

15.07.2020 | Architecture and Construction

New lithium battery charges faster, reduces risk of device explosions

15.07.2020 | Power and Electrical Engineering

A new path for electron optics in solid-state systems

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>