Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell clones shrink melanoma tumors

13.11.2002


Paper published in the Proceeding of the National Academy of Sciences



Below is an advisory distributed today by the Proceedings of the National Academy of Sciences (PNAS). The paper can be found in the online early edition of PNAS at www.pnas.org.

The study, conducted by Dr. Cassian Yee, a researcher at the Fred Hutchinson Cancer Research Center, involved 10 people diagnosed with advanced melanoma. For each patient immune system cells able to identify and target melanoma were extracted and cloned. The cloned cells were expanded in the lab and re-injected into the patient. The results of the study showed that in five patients tumors stopped growing for up to one year and in three of the patients the tumors appeared to shrink.


"While we did not expect to cure the cancers, the technique appears to benefit patients by curbing the spread of their tumors, says Dr. Yee."

Soldier Clones: T Cells Target Tumors

A preliminary clinical trial suggests that armies of T cells generated in the lab can be injected into patients to halt the spread of cancerous tumors. One strategy for treating cancer is to sensitize the immune system to the presence of tumors so it can attack the cancerous cells. Vaccinating patients with proteins present on the cancerous cells could kick the immune system into action. Instead of relying on the immune system to manufacture a defense, however, Cassian Yee and colleagues tried supplying ready-made soldiers. In the lab, the authors grew T cells, those cells that destroy invaders or aberrant cells. To insure that the T cells found their target, the authors trained them on their quarry, stimulating the cells with a protein found on metastatic melanoma cells. The authors then injected these designer T cells into 10 patients over the course of 12 weeks. The results, reported in article #6000, indicate that the T cells clones were able to home in on the tumors, which regressed slightly or stabilized in 8 of the 10 patients, for an average period of 11 months. In addition to T cells, the injections contained IL-2, a chemical that stimulates the T cells to replicate, resupplying the troops. Although IL-2 can be toxic in high doses, the patients showed little reaction to the low dose of IL-2 used.


"Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastic melanoma: in vivo persistence, migration and anti-tumor effect of transferred T cells" by C. Yee, J.A. Thompson, D. Byrd, S.R. Riddell, P. Roche, E. Celis, P.D. Greenberg.

Susan Edmonds | EurekAlert!
Further information:
http://www.fhcrc.org/
http://www.pnas.org/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

Process behind the organ-specific elimination of chromosomes in plants unveiled

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>