Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medics demonstrate treating disaster victims via satellite

12.11.2002



In reality, Ulm was the site of a full-scale trial of the new DELTASS (Disaster Emergency Logistics Telemedicine Advanced Satellites System) system, developed by a team lead by CNES for the European Space Agency (ESA).

DELTASS uses both geostationary and low earth orbit communication satellites enabling `top-down` management of emergency workers dispersed across a disaster zone, as well as letting medical experts located hundreds of miles away carry out on-the-spot diagnoses of casualties.


Such a fail-safe communication system for emergency telemedicine greatly multiplies the effectiveness of rescue workers within the affected area, especially as existing communications networks might not have survived.

"A major accident does as much invisible as visible harm," said Francesco Feliciani, DELTASS Project Manager at the European Space Agency. "Apart from the damage to terrestrial communications infrastructure done by the likes of an earthquake or floods, the first thing that becomes unavailable is the cellular network, which quickly gets overloaded. We saw this in the Toulouse chemical factory explosion last year."

Using DELTASS, search and rescue workers entering a disaster area to identify casualties carry PDAs and satellite phones to transmit details of the victims, opening `electronic patient forms` that stay with casualties throughout their treatment process and can be progressively updated.

First aid and ambulance teams are equipped with Portable Telemedicine Workstations for two-way communication with medical experts at a nearby Medical Field Hospital. Patient data such as ECGs and vital signs can be transmitted along with still images of injuries.

And at the hub of the DELTASS system is this Medical Field Hospital, set up within the disaster area. It is from here that mobile teams` activities are co-ordinated, patients are gathered, treated and their data tracked, and decisions are made about evacuating them elsewhere.

Broadband communication links enhances patient treatment, enabling videoconferencing with hospital staff in another country as well as telediagnosis techniques such as ultrasound.

Francesco Feliciani explained: "Most of all DELTASS allows us to `follow` each patient from his first contact with the search and rescue team through the quite complex chain of events that characterises the diagnostic and therapeutic intervention, distributed over time and space."

During the DELTASS baptism of fire, a Mobile Field Hospital was placed in Ulm along with three search and rescue teams, a mobile ambulance and a Portable Telemedicine Workstation.

The trial proved a great success, with several actors playing ‘victims’, relayed by ambulance to the Mobile Field Hospital. A live teleconsultation link was established with a hospital in Berlin, standing in as a second opinion reference hospital.


The DELTASS project commenced in July 2001. ESA worked on it with a number of partners including CNES and the French space medicine institute MEDES.

"DELTASS is an integrated solution where several hardware and software elements are used together" Francesco Feliciani said. "The real challenge was adapting and combining these elements to create a coherent set-up enabling emergency telemedicine.

"Now, following this demonstration, we are negotiating with the DELTASS team to launch a co-funded project to bring it to a real utilisation phase, to be operated by real users for actual emergency cases. We will hear more about this system in coming months!"

Dominique Detain | alfa
Further information:
http://www.esa.int

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Lying in a foreign language is easier

19.07.2018 | Social Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>