Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted radiation to liver tumors spares tissue, improves quality of life

12.11.2002


Radioactive spheres delivered via blood flow to tumor



Vanderbilt University Medical Center is offering the latest advancement for treating inoperable liver tumors.

Selective Internal Radiation Therapy (SIRT) targets a very high radiation dose to tumors within the liver, regardless of their cell of origin, number, size or location. The procedure uses biocompatible radioactive microspheres (SIR-Spheres®) that contain yttrium-90 and emit high energy beta radiation.


"The liver doesn’t tolerate external beam radiation in sufficient doses to affect tumor without damaging the remaining good liver," said Dr. C. Wright Pinson, H. William Scott Jr. Professor of Surgery and chair of the department. "These spheres emit radiation for a short distance, less than a centimeter. If you can cluster radiation right around the tumor, the radiation exposure at the tumor site compared to normal liver is favorable."

The spheres are implanted using a catheter placed in the artery feeding the liver and travel via the blood stream, where the spheres are targeted to the tumors within the liver. The spheres are trapped in the small blood vessels of the tumor (doctors do not have to identify the number or location of tumors, since the spheres target the cancerous growth in the liver) where they destroy the tumor without affecting most of the normal liver tissue.

In the procedure, an interventional radiologist selectively catheterizes the arteries feeding the tumor and monitors the catheter during administration of the dose. A nuclear medicine scan is done before the spheres are administered to assure that the catheter is correctly positioned and that the tumors will be properly targeted.

The patient stays overnight and is discharged the next day. "The early reports describe enhanced survival rate," said Pinson, who expects as many as 50 patients could be offered the therapy within the next year at VUMC.

A randomized trial in patients with colorectal liver metastases conducted by Sirtex, the manufacturer, showed the median survival rate doubled from 12.8 months with chemotherapy alone to 27.1 months with SIRT and chemotherapy. SIRT is another means of attack in the battle against liver cancer. "This is not a cure. It’s a prolongation of life and an improvement of survival and quality of life," said Dr. Bill Martin, associate professor of Radiology and Radiological Sciences at Vanderbilt. However, unlike many cancer therapies, side effects are minimal.

"For the patient, it’s a one-time deal and they feel relatively fine afterwards. We don’t do too many procedures like that."

Many patients experience a post-procedural fever that starts immediately after implantation of the spheres and can last from a few days to a week. The fever is usually nocturnal and is likely related to the embolic effect of the microspheres and the acute radiation effects on the tumor. Some patients experience significant abdominal pain immediately after the procedure and may need pain relief with narcotic analgesia, but the pain generally subsides within an hour. Some patients will experience nausea that may require anti-emetic medication. The therapy has been used to treat hundreds of patients with liver cancer in Australia, New Zealand, Hong Kong, Singapore and Thailand. and more recently in the United States in a variety of clinical trials and in general practice.

Clinton Colmenares | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter/

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>