Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic Hip Implants Provide Alternative for Younger Patients--Rush Testing Material That May Be More Durable Than Plastic

05.11.2002


Indiana resident Luke Pascale runs two pizza restaurants and had worked out three times a week. He also enjoyed long bike rides with his wife, but last year, the pain in his hip became so severe he couldn’t stay on a bike for more than five minutes.



"I’m very active so the thought of having hip surgery was not pleasant," said the 53-year-old father of four from St. John, Ind.

Instead of receiving the traditional hip replacement surgery, which uses a metal ball bearing in a polyethylene and titanium socket to ensure strength and stability, Pascale chose to enroll in a new study using a ceramic-to-ceramic hip implant.


"Metal-to-polyethelene hip transplants have done yoeman’s work for most patients, but after about 15 years, the metal begins to wear the plastic down, creating in some patients, osteolysis in the hip, which occurs when particles break off from the implant," said Dr. Steven Gitelis, orthopedic surgeon at Rush. He is one of the few orthopedic surgeons in Chicago testing the ceramic implant as part of a research protocol that may lead to more extensive use of the ceramic hip implants. "With more people living longer, the expectation is that hip replacements should last longer, too," he added.

To address this durability and wear issue, researchers and manufacturers began testing a ceramic-to-ceramic hip implant in 1997. Results from wear testing and examinations post mortem have suggested that ceramic hips are more durable than metal on metal hip replacements and significantly more durable that metal on polyethelene.

A large-scale clinical trial was recently completed of 1,196 total hip replacements performed between 1997 and 2002. Of these, 405 hips were followed for a minimum of 24 months. The results showed no postoperative bearing fractures and no particles flaking off that might cause complications. Also, researchers performed wear studies on ceramic hip materials with a walking and motion simulator that showed ceramic hips are 4,000 times more durable than metal on polyethylene.

The ceramic implant is not approved by the Food and Drug Administration but Gitelis believes that once it is approved, patients will have more choices of materials.

"If I’m treating a patient in his 80s, I would probably still give them the metal to polyethylene implant," Gitelis said. "But, if I have younger patient who requires a total hip replacement, I would recommend the ceramic material as it gives the patient the best chance to avoid wear and adverse effects over the long term."

Some researchers also believe that the bacteria Staphylococcus epidermis adheres more strongly to polyethylene than ceramic, though Gitelis indicated that had not yet been proven scientifically. Use of the new ceramic material will not require any new technique nor will it force surgeons to use a different socket as the new ceramic bearing is designed to fit into existing socket.

Pascale had his surgery on June 11 and now reports little discomfort and is happy he chose ceramic over traditional metal to polyethelene.


Contact: Chris Martin (href=mailto:cmartin@rush.edu>v ) or
John Pontarelli (href=mailto:jpontare@rush.edu>jpontare@rush.edua)
Phone: (312) 942-7820 or 942-5579

Chris Martin | EurekAlert!
Further information:
http://www.rush.edu/servlets/Medrel/ShowContentServlet1?id=349&cid=74

More articles from Health and Medicine:

nachricht Researchers find new potential approach to type 2 diabetes treatment
11.11.2019 | Weill Cornell Medicine

nachricht Why beta-blockers cause skin inflammation
07.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics

13.11.2019 | Life Sciences

Efficient engine production with the latest generation of the LZH IBK

13.11.2019 | Machine Engineering

Small RNAs link immune system and brain cells

13.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>