Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool for studying animal models of neurological and psychiatric diseases

05.11.2002


Will allow non-invasive study of neurochemistry, behavior, and disease progression



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice.

This "proof-of-principle" experiment, described in the November issue of the Journal of Nuclear Medicine, "opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson’s and Alzheimer’s disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders," said Panayotis (Peter) Thanos, lead author of the paper. Studying animal models may help scientists better understand and develop treatments for the human diseases.


Thanos and his team used microPET to measure the level of "D2" receptors for dopamine -- a brain chemical associated with feelings of reward and pleasure, which has been found to play a role in drug addiction -- in the brains of normal mice and so-called knockout mice, which had been genetically engineered to lack the gene for D2. The dopamine D2 receptor has been implicated in a wide variety of neuropsychiatric disorders, including, in recent studies by Brookhaven researchers, alcoholism and substance abuse. Thus, these D2-deficient mice are important for studying human diseases.

Before the scans, each mouse was given an injection of a radiotracer molecule designed to bind to D2 receptors. The microPET scanner then picked up the signal from the tracer to show where and how much was bound in various parts of the brain. The level of the tracer indicates the number of receptors.

In the striatum, a region of the brain normally rich in D2 receptors, "deficient" mice had significantly lower levels of tracer binding compared with their normal counterparts. There was no difference in tracer binding between strains in the cerebellum, an area of the brain that normally lacks D2 receptors, which was studied for comparison.

The scientists ruled out anatomical differences as a possible explanation for their results by comparing magnetic resonance imaging (MRI) brain scans of the two strains, which showed no differences. They also confirmed the difference in D2 receptor levels between "deficient" and normal mice with traditional autoradiography, where tissue samples are labeled with a radiotracer to reveal receptor levels.

"The results clearly show that microPET is an excellent technique that can pick up the neurochemical difference between the two strains in a non-invasive way," Thanos said. "And because this technique can be used in living animals, we can now study how these neurochemical differences between genetic strains of mice affect behavior and/or disease progression over time in the same animals," he said.

The technique can easily be extended to study other human neurological or psychiatric diseases for which knockout animal models exist, such as Alzheimer’s and Parkinson’s disease, or even depression and anxiety disorders.

This work was funded by the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse, and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.


The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Panayotis Thanos lives in Port Jefferson, New York.


Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>