Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool for studying animal models of neurological and psychiatric diseases

05.11.2002


Will allow non-invasive study of neurochemistry, behavior, and disease progression



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice.

This "proof-of-principle" experiment, described in the November issue of the Journal of Nuclear Medicine, "opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson’s and Alzheimer’s disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders," said Panayotis (Peter) Thanos, lead author of the paper. Studying animal models may help scientists better understand and develop treatments for the human diseases.


Thanos and his team used microPET to measure the level of "D2" receptors for dopamine -- a brain chemical associated with feelings of reward and pleasure, which has been found to play a role in drug addiction -- in the brains of normal mice and so-called knockout mice, which had been genetically engineered to lack the gene for D2. The dopamine D2 receptor has been implicated in a wide variety of neuropsychiatric disorders, including, in recent studies by Brookhaven researchers, alcoholism and substance abuse. Thus, these D2-deficient mice are important for studying human diseases.

Before the scans, each mouse was given an injection of a radiotracer molecule designed to bind to D2 receptors. The microPET scanner then picked up the signal from the tracer to show where and how much was bound in various parts of the brain. The level of the tracer indicates the number of receptors.

In the striatum, a region of the brain normally rich in D2 receptors, "deficient" mice had significantly lower levels of tracer binding compared with their normal counterparts. There was no difference in tracer binding between strains in the cerebellum, an area of the brain that normally lacks D2 receptors, which was studied for comparison.

The scientists ruled out anatomical differences as a possible explanation for their results by comparing magnetic resonance imaging (MRI) brain scans of the two strains, which showed no differences. They also confirmed the difference in D2 receptor levels between "deficient" and normal mice with traditional autoradiography, where tissue samples are labeled with a radiotracer to reveal receptor levels.

"The results clearly show that microPET is an excellent technique that can pick up the neurochemical difference between the two strains in a non-invasive way," Thanos said. "And because this technique can be used in living animals, we can now study how these neurochemical differences between genetic strains of mice affect behavior and/or disease progression over time in the same animals," he said.

The technique can easily be extended to study other human neurological or psychiatric diseases for which knockout animal models exist, such as Alzheimer’s and Parkinson’s disease, or even depression and anxiety disorders.

This work was funded by the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse, and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.


The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Panayotis Thanos lives in Port Jefferson, New York.


Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>