Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model for common type of cancer developed by UCLA scientists

30.10.2002


Scientists at UCLA’s Jonsson Cancer Center have developed the world’s first animal model for mature human B-cell lymphomas, a discovery that may lead to the uncovering of the genetic mutations that cause these types of cancer. Mature B-cell type lymphomas account for about 85 percent of all lymphomas.



The basic science discovery is outlined in the Oct. 29 issue of the peer-reviewed journal Proceedings of the National Academy of Sciences.

"What we can do now is grow cell lines out of this model to determine which cancer-causing companion mutations arise," said Dr. Mike Teitell, a physician and researcher at UCLA’s Jonsson Cancer Center and the lead author of the article, available online at www.pnas.org/. "This model appears to yield a large spectrum of mature B-cell lymphomas."


Teitell, collaborator Randolph Wall, and their research team, scientist Katrina Hoyer and Dr. Samuel French, had previously identified an abnormality in a gene called T-cell leukemia 1 (TCL1) in patients with B-cell lymphomas, especially in those suffering from AIDS.

The researchers wondered what would happen if they developed an animal model with abnormally expressed TCL1 -- would the model develop cancer? Teitell and his team got more than they expected: animals with abnormally regulated TCL1 developed three different types of lymphoma.

"This finding suggested that specific mutations in addition to TCL1 were causing distinct types of B-cell malignancy. It was a very surprising result," Teitell said "Before this, we did not have a model for any of these forms of lymphoma. Since we can now generate all these different types, we are in a position to understand the changes that cause each type. For example, why does one animal with abnormal TCL1 expression develop one type of lymphoma, while a genetically identical animal develops a different type?"

B-cell lymphomas include both Hodgkin’s and non-Hodgkin’s lymphomas. Specifically, the three types of B-cell lymphoma that grew out of Teitell’s animal model were Burkitt-like lymphoma, diffuse large B-cell lymphoma and follicular center cell lymphoma, all of which are classified as non-Hodgkin’s lymphomas.

Now the team wants to know why these three forms arose in the same genetic background. Teitell theorizes that there may be different cell pathways -- or highways that cells use to send signals -- involved in the three different types of lymphoma. If Teitell and his team can identify the pathways, they can attempt to block them with new drugs, Teitell said, akin to hitting the brake on a car or turning off a light switch. The idea is to interrupt the cell signal before it triggers the genetic mutation that causes the cancer to begin to grow.

"I think we may have identified an important mechanism that links certain signaling pathways with the causation of certain cancers, in this case in the immune system but perhaps in other parts of the body as well," Teitell said.

Lymphomas are cancers that start in lymphoid tissue, also called lymphatic tissue. The lymphatic system is important for filtering germs and cancer cells, as well as fluid from the extremities and internal organs. Lymphoid tissue is found in many places throughout the body, including lymph nodes, the thymus, the spleen, the tonsils and adenoids, in the bone marrow, and scattered within other systems, such as the digestive and respiratory systems.

About 60,000 Americans will develop lymphomas, and 26,000 people will die of the disease this year alone, according to the American Cancer Society.

The next step for Teitell and his research team will be to develop molecules that block the action of TCL1, trying to discover what cell pathway or pathways are being used by cells destined to become malignant. They also are working to discover if TCL1 is abnormally expressed in other human cancers.

"I think this has real promise," Teitell said. "This has a chance to go all the way."

Kim Irwin | EurekAlert!

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>