Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify motor that powers parasitic cell invasion

25.10.2002


The development of drugs to combat some of the world’s most serious parasitic diseases is a step nearer with the discovery of a widely-shared gene that helps parasites to invade host cells.



The new understanding of the gene’s role in the single-celled parasite Toxoplasma gondii gives scientists a target to block that could stop the parasite literally in its tracks.

In experiments reported today in the journal Science, researchers at Imperial College London and the University of Mannheim, Germany show that the motor powering Toxoplasma’s invasion of host cells is stopped when the parasite myosin A gene is disrupted.


Myosin A is present in all members of the Apicomplexa family of parasites, which includes Toxoplasma and Plasmodium falciparum, which cause Toxoplasmosis and malaria respectively.

Toxoplasma, mainly transmitted by consumption of contaminated meat or by cat faeces, chronically infects half the world’s population. The pathogen is a leading cause of neurological birth defects in children born to mothers who contract the disease during pregnancy and can cause fatal toxoplasmosis encephalitis in immunosuppressed patients.

Scientists hope that understanding the gene’s function will aid efforts to develop drugs that target and block the way Apicomplexa parasites penetrate host cells.

Unlike most viruses and bacteria that require host cell participation to attack cells and be engulfed, Apicomplexans actively penetrate cells.

They use a unique gliding motion powered by an actin-myosin system to rapidly spread throughout tissues in the host’s body and to invade cells.

"Our research demonstrates for the first time that parasite motility is powered by an unusual motor, which is essential for invading host cells," says research leader Dr Dominique Soldati from Imperial’s Department of Biological Sciences.

"The Apicomplexa family of parasites are all strictly dependent on an unusual gliding motion to get into cells. If the parasite can’t get in, it can’t establish an infection," she says.

Once the parasite docks with the host cell it sends out proteins that bind tightly to host cell receptors and create an indented pocket in the surface of the cell. The parasite’s myosin molecules then latch onto the newly formed protein-receptor complexes pulling the myosin along a skeleton of actin and into the cell.

"Myosin A is an extremely fast moving motor, comparable in speed to the myosin responsible for the contraction of muscle in humans. The motor propels the parasite at a speed of five micrometers per second, allowing it to penetrate host cells within 10 to 30 seconds.

"This rapid entry process is essential for Apicomplexan parasites to replicate safely, hidden from the immune system," says Dr Soldati.

Researchers established myosin A’s function by knocking out the gene in Toxoplasma gondii and observing the effects on its motility. They used time-lapse microscopy to score the percentage of parasites able to glide and perform normal forms of movement on coated glass slides.

"In optimum conditions freshly released parasites exhibit circular gliding, upright twirling and helical gliding. But with only partial gene function the parasites performed a reduced number or incomplete circles and at a lower speed. With the gene completely shut down the parasites were totally unable to move."

"Toxoplasma remains an important threat to human health with the continual spread of AIDS, while the malaria parasite kills more than 1 million children each year.

"A detailed understanding of the mechanism of host cell invasion by the Apicomplexans is an important and acute goal since such studies will lead to the identification of novel therapeutic targets, which are urgently needed," says Dr Soldati.

The work was funded by the Deutsche Forschungsgemeinschaft.

Judith H Moore | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>