Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis gene mutations missing from some cases

16.10.2002


A new study from Johns Hopkins finds that some patients diagnosed with cystic fibrosis (CF) lack any of the more than 1,000 reported disease-causing mutations in the only known CF gene. Scheduled for presentation Oct. 18 at the annual meeting of the American Society for Human Genetics in Baltimore, the findings also recently appeared in the New England Journal of Medicine.



The discovery may mean that another gene, as yet unidentified, is to blame for these cases, or perhaps these patients really have another, unknown disease, despite the similarity of symptoms, the researchers suggest.

Loss of the function of a protein called CFTR was identified more than a decade ago as the cause of CF, a life-shortening disease characterized by frequent, severe lung infections. In less severe cases, known as "non-classic" CF, patients retain some working CFTR, but not at normal levels. Over the years, scientists have linked these conditions to more than 1,000 changes in the gene for CFTR.


"Our findings should lead to a discussion about what is, and is not, non-classic cystic fibrosis," says Garry Cutting, M.D., director of the DNA Diagnostic Lab at the McKusick-Nathans Institute of Genetic Medicine at Hopkins. "Hopefully, extensive clinical evaluation of patients without identifiable changes in the gene for CFTR will improve diagnosis and treatment of cystic fibrosis and cystic fibrosis-like conditions."

In the new study, of 74 patients diagnosed with non-classic CF and referred to the Cystic Fibrosis Foundation Genotyping Center at Hopkins, detailed genetic analysis showed that 29 had mutations in both copies of the CFTR gene, 15 had only a single mutation and 30 had no detectable changes in their CFTR genes. (One copy is inherited from each parent.) Cutting says other researchers now report the same observation.

"These patients were referred by physicians experienced with cystic fibrosis, and we expected to find a causative mutation in each copy of each patient’s CFTR gene," says Cutting, who also heads the genotyping center. "While it’s possible we could have missed some mutations, we believe they just weren’t there to be found in these patients."

The researchers looked for changes in the CFTR gene in areas that carry instructions for the CFTR protein and those that control the expression of the gene. It might be possible that changes to the CFTR protein, unrelated to the sequence of its gene (so-called "epigenetics"), are at the root of these patients’ conditions.

To cause disease, any changes must reduce or alter how the CFTR protein works. In classic CF, there’s no working CFTR protein, and a thick mucous forms that traps bacteria in the airways, causing infections. In the non-classic version, the theory held that some working CFTR protein remained to transport charged atoms and water into and out of cells, while symptoms run the gamut from mild to severe.

First surprised that many patients lacked any mutations in their CFTR genes, the scientists were surprised again when symptoms were the same for these patients and those with one or two CFTR mutations. For each measurement, including the standard test for CFTR function that measures the amount of salt in sweat, each group looked like the others.

"Once we saw that we had a large number of patients without changes in CFTR, we thought we’d be able to demonstrate that they had a different condition," says Cutting. "But we couldn’t."

The Cystic Fibrosis Foundation Genotyping Center at Johns Hopkins was launched in 1998 to look for genetic changes responsible for cases of non-classic cystic fibrosis that couldn’t be explained by the most common known mutations.

The Hopkins researchers are putting together a detailed account of each patient’s symptoms, biochemical and electrophysiological measurements, genetic status, and possible non-genetic contributors to find subtle differences between the groups that will allow physicians to distinguish between conditions linked to CFTR mutations and those that aren’t.

Joanna Downer | EurekAlert!
Further information:
http://www.ashg.org
http://www.nejm.org

More articles from Health and Medicine:

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>