Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cystic fibrosis gene mutations missing from some cases

16.10.2002


A new study from Johns Hopkins finds that some patients diagnosed with cystic fibrosis (CF) lack any of the more than 1,000 reported disease-causing mutations in the only known CF gene. Scheduled for presentation Oct. 18 at the annual meeting of the American Society for Human Genetics in Baltimore, the findings also recently appeared in the New England Journal of Medicine.



The discovery may mean that another gene, as yet unidentified, is to blame for these cases, or perhaps these patients really have another, unknown disease, despite the similarity of symptoms, the researchers suggest.

Loss of the function of a protein called CFTR was identified more than a decade ago as the cause of CF, a life-shortening disease characterized by frequent, severe lung infections. In less severe cases, known as "non-classic" CF, patients retain some working CFTR, but not at normal levels. Over the years, scientists have linked these conditions to more than 1,000 changes in the gene for CFTR.


"Our findings should lead to a discussion about what is, and is not, non-classic cystic fibrosis," says Garry Cutting, M.D., director of the DNA Diagnostic Lab at the McKusick-Nathans Institute of Genetic Medicine at Hopkins. "Hopefully, extensive clinical evaluation of patients without identifiable changes in the gene for CFTR will improve diagnosis and treatment of cystic fibrosis and cystic fibrosis-like conditions."

In the new study, of 74 patients diagnosed with non-classic CF and referred to the Cystic Fibrosis Foundation Genotyping Center at Hopkins, detailed genetic analysis showed that 29 had mutations in both copies of the CFTR gene, 15 had only a single mutation and 30 had no detectable changes in their CFTR genes. (One copy is inherited from each parent.) Cutting says other researchers now report the same observation.

"These patients were referred by physicians experienced with cystic fibrosis, and we expected to find a causative mutation in each copy of each patient’s CFTR gene," says Cutting, who also heads the genotyping center. "While it’s possible we could have missed some mutations, we believe they just weren’t there to be found in these patients."

The researchers looked for changes in the CFTR gene in areas that carry instructions for the CFTR protein and those that control the expression of the gene. It might be possible that changes to the CFTR protein, unrelated to the sequence of its gene (so-called "epigenetics"), are at the root of these patients’ conditions.

To cause disease, any changes must reduce or alter how the CFTR protein works. In classic CF, there’s no working CFTR protein, and a thick mucous forms that traps bacteria in the airways, causing infections. In the non-classic version, the theory held that some working CFTR protein remained to transport charged atoms and water into and out of cells, while symptoms run the gamut from mild to severe.

First surprised that many patients lacked any mutations in their CFTR genes, the scientists were surprised again when symptoms were the same for these patients and those with one or two CFTR mutations. For each measurement, including the standard test for CFTR function that measures the amount of salt in sweat, each group looked like the others.

"Once we saw that we had a large number of patients without changes in CFTR, we thought we’d be able to demonstrate that they had a different condition," says Cutting. "But we couldn’t."

The Cystic Fibrosis Foundation Genotyping Center at Johns Hopkins was launched in 1998 to look for genetic changes responsible for cases of non-classic cystic fibrosis that couldn’t be explained by the most common known mutations.

The Hopkins researchers are putting together a detailed account of each patient’s symptoms, biochemical and electrophysiological measurements, genetic status, and possible non-genetic contributors to find subtle differences between the groups that will allow physicians to distinguish between conditions linked to CFTR mutations and those that aren’t.

Joanna Downer | EurekAlert!
Further information:
http://www.ashg.org
http://www.nejm.org

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>