Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nerves from the ribs may restore leg movement in spinal cord injury

07.10.2002


Researchers receive grant to use robots to improve walking



Irvine, Calif. -- Paralysis from spinal cord injury was significantly reversed by adding tiny nerves from the rib cage and mixing them with a powerful growth inducer found in most nerve cells, a UC Irvine and Long Beach Veterans Administration Medical Center study has found.

The study, conducted in rats, suggests that nerve cells can be inserted and stimulated to grow through damaged areas of the spinal cord, perhaps leading to better treatments for spinal cord injury. The research is part of a wave of studies challenging the conventional wisdom that severed nerves in the spinal cord are nearly impossible to regenerate. The study appears in the October issue of the Journal of Neurotrauma.


Dr. Vernon Lin, professor of physical medicine at UCI and director of the Spinal Cord Injury Group at the Long Beach V.A., and his colleagues found that grafting nerves from the rib cage and adding the growth stimulator, a molecule called aFGF, partially restored hind leg movement in rats that had their spinal cords severed.

"By using tiny nerves from the rib cage as cables connecting the severed spinal cord, we were able to get some improvement in leg function," Lin said. "Regeneration is considered very difficult because the damaged area apparently inhibits growth of new nerve-cell connections. This study gets us closer to arriving at the right combination of growth factors, nerve cells and physical stimulation that overcome these inhibitions and successfully treat spinal cord injury."

Lin and his team found that 12 rats with severed spinal cords were able to move their hind legs again after treatment with both the aFGF and the nerve grafts, while rats that had either the aFGF or nerve grafts alone showed nearly no improvement. Rats receiving both the growth factor and the nerve cell grafts could support some of their weight on their back legs.

The growth factor aFGF is normally produced in the spinal cord by nerve cells, but scientists suspect that it is stored and only used when nerve cells are damaged. Previous studies have shown that adding aFGF can stimulate growth in individual nerve cells in the laboratory.

The rats’ movements were measured using a tool called a BBB score. Normal movement rates a BBB score of about 21. Six months after the rats were treated, the animals that received the aFGF and nerve grafts had scores between six and seven. The other animals did not score higher than one on the scale.

"While not a perfectly normal score of locomotion, the treatments did allow the rats to step forward and put weight on their hind legs," Lin said. "We also found that the nerves in the leg below the injury site were once again receiving nerve impulses from the brain. We believe that eventually, we may be able to find the right mix of factors and physical stimulation all working together to improve this restored movement to more normal levels."

The researchers also plan to study the use of robots to aid in the placement and maintenance of nerve cells that are grafted into an injured area, to help improve movement. They recently received a $600,000 research grant from the Veterans Administration to continue their work in designing and testing robots that could help in maintaining the gait necessary to walk. Currently, they are testing the ability of the robots to accurately maintain a walking gait in rats. Eventually, the researchers hope to test the robots in humans and determine if the machines are actually helping restore the ability to walk after spinal cord injury.


Lin’s colleagues in the study include Yu-Shang Lee of UCI’s College of Medicine and Ian Hsiao of UCI and the Long Beach V.A. Medical Center.

Andrew Porterfield | EurekAlert!
Further information:
http://www.uci.edu/
http://www.today.uci.edu

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>