Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows why some immune systems control HIV

07.10.2002


Scientists are beginning to change their thinking about why the immune systems of most people infected with HIV cannot control the spread of the virus while the immune systems of a rare group of individuals, called long-term nonprogressors, can. For some time, scientists thought that people who could not control HIV had too few HIV-fighting white blood cells called CD8+ T cells. However, a new study suggests the difference is not the number but the quality of these cells: both nonprogressors and others have about the same number of HIV-fighting CD8+ T cells, but the cells of nonprogressors function better.



"Understanding the mechanisms by which the immune systems of long-term nonprogressors control HIV is important to our development of effective vaccines," says Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases (NIAID). "Studies like this one, which reveal basic knowledge about how the immune system interacts with HIV, form the foundation of our effort to fight this disease." Details of the study, conducted by NIAID scientists, will appear on October 7 in the advanced online issue of Nature Immunology.

Instead of attacking HIV directly, CD8+ cells inhibit virus spread by killing off other immune system cells infected with HIV. "For some time we have known that even patients who cannot control HIV maintain high numbers of HIV-specific CD8+ T cells," says senior author Mark Connors, M.D., of NIAID’s Laboratory of Immunoregulation. However, this study represents the first time scientists have observed a difference in the HIV-specific CD8+ T-cell response of nonprogressors, he says. This study also suggests a mechanism whereby the CD8+ T cells of nonprogressors control HIV and those of most individuals do not.


Dr. Connors and colleagues closely examined the immune systems of 40 people infected with HIV, including a group of about 15 nonprogressors - people who have controlled HIV for up to 20 years without antiretroviral therapy. The researchers found no significant difference in the number of HIV-fighting CD8+ cells between nonprogressors and the others. Instead, the scientists found that the nonprogressors’ cells were better able to divide and proliferate when called on to go into action; they also produced higher levels of a molecule called perforin, which helps them to kill off cells infected with HIV.

"Some of the newer techniques used in this study enabled us to see the functional differences in the CD8+ T cells of the two groups," says lead author Stephen Migueles, M.D., also at NIAID’s Laboratory of Immunoregulation. "The CD8+ T cells of people in the study who did not control HIV had retained only a limited ability to divide and produce perforin."

This finding is especially important to HIV vaccine research efforts, says Dr. Connors, because many candidate HIV vaccines attempt to induce a strong CD8+ T cell response. New knowledge about CD8+ T-cell function opened up by this line of research might lead to preventive vaccines that avoid the development of poorly functioning CD8+ T cells. In addition, this research might lead to therapeutic vaccines for HIV-infected people that improve the function of their CD8+ T cells and control HIV infection.

Next, Dr. Connors and colleagues plan to analyze an even broader array of differences between the CD8+ T cells of nonprogressors and others infected with HIV, seeking to understand what causes the poor function of most HIV-infected people’s CD8+ T cells.


NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Jeff Minerd | EurekAlert!

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>