Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic pain causes changes in the human brain

02.10.2002


‘Chronic pain causes permanent alterations in the human primary somatosensory (SI) and motor (M1) cortices,’ says docent Nina Forss. ‘These alterations can be used as objective indicators of pain that shapes the human brain,’ she continues. Nina Forss works at the Helsinki University of Technology Low Temperature Laboratory: the laboratory’s Brain Research Unit was appointed a Centre of Excellence in Research in 1995.



Each body part has its representation area in the somatosensory cortex

The LTL Brain Research Unit launched in 2000 a research project aimed at exploring the mechanisms of pain processing in the human brain. One of the key instruments is a thulium laser that is used for selective and controlled stimulation of the pain fibres in the skin. The stimulus is repeated at intervals of five seconds, causing to the healthy volunteer a short sharp sensation of pain, resembling the prick of a needle. The cortical response is measured by means of multichannel magnetoencephalography (MEG). The objective is to find out which areas of the cerebral cortex are activated to pain and in what order.


Normally each body part has its own area of representation in the cortex: that area will first receive the sensory information arriving from the respective body part. The size of the area depends upon the density of nerve fibres in that body part. For instance the thumb has a much larger representation area in the somatosensory cortex than the back. Earlier studies have shown that the size of these areas may continue to change in adulthood depending on the amount and frequency of sensory stimuli received in each area. ‘For instance the representation area of an amputated arm will disappear altogether; its place will be taken over by the adjacent area, usually that of the fac,e, Nina Forss explains.

It has been shown earlier that chronic pain is associated with alterations in the representation areas. This was seen for instance in amputees who showed phantom pain in the amputated limb. The intensity of the pain increased in proportion to the extent of the changes in the cortical representation areas. So far researchers have been unable to establish to what extent pain alone, without the loss of a limb or a nerve connection, can cause permanent changes in the somatosensory cortex.

Results promise new methods of rehabilitation for chronic pain patients

For their studies of how the somatosensory cortex is affected by chronic pain, the BRU investigated six patients contacted through the Orton Hospital in Helsinki. These patients had intense pain in one upper extremity without a nerve injury or other obvious reason. The patients also showed changes in their sense of touch, and any movement of the limb added to the sense of pain. In addition, they had difficulty using their hand on account of clumsiness and reduced muscle strength.

To locate the representation areas of the patients’ thumb and little finger, the researchers applied a light sensory stimulus to their fingers. On the side of the healthy upper extremity the areas at the cortex were located at a distance of 1.5 cm from each other, just as in the healthy subjects in the control group. By contrast on the side of their painful arm the representation areas of the thumb and littlefinger were exceptionally close to each other.

The same result was seen in all subjects, i.e. chronic pain had changed the way that sensory stimuli were processed in the somatosensory cortex. This kind of alteration may contribute to impaired hand movements and clumsiness; such symptoms were also observed in the subjects. In other words the results provided indication not only of changes in the somatosensory cortex, but also of changes in the function of the motor cortex in connection with chronic pain.

The results also point at new possibilities of rehabilitation. For instance, the stimulation of individual fingers could restore the normal representational areas of the cortex and thus improve the function of the hand. With this approach it might even be possible to reduce the perceived pain.

Jenni Järvelä | alfa

More articles from Health and Medicine:

nachricht Protective antibodies identified for rare, polio-like disease in children
06.07.2020 | Purdue University

nachricht Cancer cells make blood vessels drug resistant during chemotherapy
02.07.2020 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>