Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrong proteins targeted in battle against cancer?

02.10.2002


Lasker recipient James E. Darnell contends drug developers should focus more on ’transcription factor’ proteins



Researchers may be looking for novel cancer drugs in the wrong places, says Rockefeller University Professor James E. Darnell, Jr., M.D., in an article in this month’s Nature Reviews Cancer.

Darnell, who received the 2002 Albert Lasker Award for Special Achievement in Medical Science, argues that drug development research should focus more on a specific group of proteins - called transcription factors - known to be overactive in almost all human cancers.


"The facts indicate that a limited number of transcription factors are indeed overactive in many cancers and that these overactive proteins themselves are appropriate drug targets," says Darnell, head of the Laboratory of Molecular Cell Biology at Rockefeller and co-author of the popular textbook Molecular Cell Biology.

These transcription factors include STAT3, discovered by Darnell and colleagues in 1994, STAT5, NF-kappaB, B-catenin, Notch, GLI and c-JUN - all of which play significant roles in a wide variety of cancers.

According to Darnell, drug developers continue to largely ignore these seemingly universal molecules of cancer because, unlike other cancer-causing proteins called protein kinases, transcription factors do not posses "active sites" or pockets that can be easily fitted with small inhibitory drugs.

Instead, drugs designed against transcription factors would have to target protein-protein interactions - which, because of their larger surface areas, are much harder to disrupt.

Still, Darnell argues that, despite inherent obstacles, such an approach could potentially yield novel cancer therapeutics.

"After all," he asks, "What is the benefit to medicine in all the twenty-first century promise of proteomics if we cannot selectively inhibit protein-protein interactions?"

Many of the transcription factors involved in cancer normally allow a healthy cell to respond to signals from the external environment by activating the "expression" of certain genes, which then leads to the production of new proteins. In cancer - which is characterized by cell growth gone awry - genetic mutations cause these proteins, also referred to as "oncogenic proteins," to become unusually active.

Therefore, drugs designed to block or decrease their surplus activity might effectively treat this disease.

"Transcription factors are attractive targets because they are both less numerous than other signaling activators and are at a focal point of many cancer pathways," says Darnell.

"Like kicking Achilles in the heel, striking at these targets would constitute a more global approach to fighting cancer."

In the past, drug developers in search of cancer therapeutics have placed a large focus on cancer-causing molecules called protein kinases, primarily because their active sites - tiny crevices where small molecules normally bind and activate the protein - can be easily blocked with small molecule drugs. The drug Gleevec, for example, can temporarily treat chronic myeloid leukemia by fitting into and plugging up the active site of a protein kinase, called the Ableson kinase, associated with this disease.

But, according to Darnell, this approach has two main drawbacks. First, as is the case with Gleevec, resistance to the drugs can develop, and, second, each of the protein kinases tends to be associated with only a limited number of cancer types.

Darnell argues that both of these obstacles could possibly be overcome by instead targeting certain transcription factors. He says that these proteins should not develop resistance to drugs as fast as protein kinases, and, because they are common to many cancers, drugs designed to block them should work against a diverse range of cancer types.

The final challenge is then how to target molecules that lack the convenient active sites of protein kinases. Drugs directed against transcription factors would have to prevent them from binding to one of their two primary molecular targets: DNA or proteins. To turn on specific genes, transcription factors must bind to other proteins as well as to DNA.

Since past efforts to develop drugs that disrupt DNA-protein interactions have failed, Darnell believes that targeting protein-protein interactions is the next logical step.

"With the availability of robotic screening procedures, huge chemical libraries need to be screened for small molecules that target any of the specific protein-protein interactions of transcription factors," he says.

"Even though this approach is more difficult," he adds, "It has proved practical in one preliminary case, and furthermore many inventive technologies from chemistry labs around the world give hope that this approach has great possibilities."

Whitney Clavin | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Health and Medicine:

nachricht New combination therapy established as safe and effective for prostate cancer
26.06.2019 | Society of Nuclear Medicine and Molecular Imaging

nachricht Novel model for studying intestinal parasite could advance vaccine development
26.06.2019 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>