Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cells improve motor function in brain injuries

02.10.2002


Transplants in animal models could translate into therapy for humans

Neural stem cells, transplanted into injured brains, survive, proliferate, and improve brain function in laboratory models according to research based at the University of Pennsylvania School of Medicine. The findings, published in the October edition of the journal Neurosurgery, suggest that stem cells could provide the first clinical therapy to treat traumatic brain injuries. Traumatic brain injuries occur in two million Americans each year and are the leading cause of long-term neurological disability in children and young adults.

"Transplantation of neural stem cells in mice three days after brain injury promotes the improvement of specific components of motor function," said Tracy K. McIntosh, PhD, professor in the Department of Neurosurgery, Director of Penn’s Head Injury Center, and senior author of the study. "More importantly, these stem cells respond to signals and create replacement cells: both neurons, which transmit nerve signals, and glial cells, which serve many essential supportive roles in the nervous system."



If stem cells are blank slates, able to become any type of body cells, then neural stem cells (NSCs) are slates with the basics of neurology already written on them, waiting for signals in the nervous system to fill in the blanks. The NSCs used by McIntosh and his colleagues were cloned from mouse progenitor cells and grown in culture. The advantage of NSCs exists in their ability to easily incorporate themselves into their new environment in ways other types of transplants could not.

"If you put these cells into normal newborn mice, they would behave exactly like normal cells – they create different neural cell types and they don’t reproduce tumorigenically," said McIntosh. "In humans, the use of similar neural stem cells would avoid the ethical dilemmas posed by fetal stem cells and the limitations seen in cultures of cloned neurons."

In humans, traumatic brain injury is associated with disabilities affecting mobility, motor function and coordination. Following NSC transplantation in mice, the researchers used simple tests to determine motor skills. They found that mice with transplanted NSCs recovered much of their physical ability. The transplanted NSCs, however, seemed to have little effect in aiding recovery of lost cognitive abilities.

"The ultimate goal, of course, is to translate what we have learned into a therapy for humans," said McIntosh. Neural transplantation has been suggested to be potentially useful as a therapeutic intervention in several central nervous system diseases including Parkinson’s disease, Huntington’s disease, ischemic brain injury, and spinal cord injury. While McIntosh is impressed with the results of NSC transplants in mice, similar trials for humans are not expected in the near future.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>