Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant Reduces Brain Damage in Stroke Model

01.10.2002


New research shows that a synthetic antioxidant can reduce brain damage by more than 40 percent in an animal model of stroke when given seven and a half hours after the stroke begins. Researchers at National Jewish Medical and Research Center and Duke University Medical Center will report their findings in the October issue of the journal Free Radical Biology and Medicine.



"Because the onset of a stroke can be difficult to detect, many patients do not get treatment for several hours," said James Crapo, M.D., co-author and Chairman of the Department of Medicine at National Jewish. "Our findings suggest that the antioxidant is a promising candidate for stroke therapy because it can prevent damage so many hours after the stroke begins."

Strokes occur when blood supply to the brain is interrupted because blood vessels in the brain either leak or are blocked. Starved of oxygen, the brain cells die. However, cell death continues to occur for many hours, even after blood flow is returned to the brain. Many of the cells that are injured, but not killed by oxygen deprivation, die in the hours following the stroke. Free radicals, highly reactive molecules, kill many of those cells.


The researchers used a synthetic antioxidant, known as AEOL 10150, to neutralize the damaging free radicals and reduce cell death in a mouse model of stroke. AEOL 10150, developed by Dr. Crapo and his colleagues at Duke, mimics the naturally occurring antioxidant superoxide dismutase, but is effective against a wider range of oxygen radicals and lasts longer in the body. Now licensed by Incara Pharmaceuticals Corporation, it has shown promise in preventing damage to cells caused by diabetes and radiation therapy for cancer.

The researchers blocked the middle cerebral artery of rats for 90 minutes. They then injected AEOL 10150 or a placebo into the brains of these mice six hours after the artery had been reopened. The six-hour post-stroke time period has significant clinical relevance. In an unrelated stroke study, 26 percent of patients received treatment within four hours, but 99 percent received treatment within six hours.

When evaluated a week later, animals who received the placebo had an average of 160 cubic millimeters of brain tissue destroyed by the stroke. Animals who received the antioxidant had an average of 92 cubic millimeters of brain tissue destroyed by the stroke, 43 percent less than that the rats who received the placebo.

"There is a significant arc of potentially salvageable tissue surrounding the cells that are killed by the initial stroke," said David S. Warner, M.D., professor of anesthesiology at Duke University Medical Center. "The antioxidant appears to protect this tissue."

The researchers also treated mice with intravenous injections of the antioxidant. Although, this method produced a smaller effect, it reduced both tissue damage and neurological deficit, demonstrating the compound’s ability to cross the blood-brain barrier. Mechanistic studies also showed that the antioxidant significantly altered inflammatory gene expression in tissue.

William Allstetter | EurekAlert!
Further information:
http://www.njc.org/

More articles from Health and Medicine:

nachricht Coupled hair cells in the inner ear – „Together we are strong!“
06.07.2020 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht Protective antibodies identified for rare, polio-like disease in children
06.07.2020 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>